
Vol. VIII, No 1, Mayo (2000)
Matemáticas: 1–??

Matemáticas:
Enseñanza Universitaria
c©Escuela Regional de Matemáticas

Universidad del Valle - Colombia

Process Calculi to Analyze Emerging Applications in
Concurrency

Alejandro Arbeláez
aarbelaez@puj.edu.co

Andrés Aristizábal
aaaristizabal@puj.edu.co

Julian Gutiérrez
J.E.Gutierrez@ed.ac.uk

Hugo A. López
lopez@dit.unitn.it

Jorge A. Pérez
perez@cs.unibo.it

Camilo Rueda
crueda@cic.puj.edu.co

Frank D. Valencia
frank.valencia@lix.polytechnique.fr

Abstract

The notion of computation has significantly evolved in the last ten years or so. Modern
computing systems (e.g., Internet) now exhibit infinite behavior, usually in the context
of decentralized networks where interactions are inherently concurrent. The ubiqui-
tous presence of this new kind of systems has led to the urgent need of counting with
techniques for designing them in a reliable way. Process calculi are formal specification
languages of concurrent systems in which the notions of process and interaction pre-
vail. They are endowed with reasoning techniques that allow to rigorously determine
whether a system exhibits some desirable properties. The generic nature of process
calculi has made possible their successful application in very diverse areas. Based on
recent work by the authors, this paper illustrates the use of process calculi in two
emerging application areas: biology and security protocols. Basic notions of process
calculi are introduced, real systems in the two areas are modeled and their properties
are verified.

Keywords: Computer Science, Concurrency Theory, Verification of Concurrent Sys-

tems, Process Calculi.

1 Introduction

Recent years have seen the impressive development of Internet and the increase
in flexibility and power of communication networks. We now find ourselves
in “global computing” environments, in which a significant evolution of the
notion of computation can be recognized. There are two main issues that evi-
dence this change. First of all, software artifacts are now meant to be infinite,
in the sense that the applications they are part of demand an uninterrupted
execution. For instance, in the context of operating systems and Web-based
applications (such as online banking services), interruptions are a highly un-
desirable defect and, in some cases, can be also catastrophic. Secondly, since

1

aarbelaez@puj.edu.co
aaaristizabal@puj.edu.co
J.E.Gutierrez@ed.ac.uk
lopez@dit.unitn.it
perez@cs.unibo.it
crueda@cic.puj.edu.co
frank.valencia@lix.polytechnique.fr

2 Arbeláez et al.

modern computer devices (e.g., portable computers, cell phones) now interact
in the context of decentralized communication networks, the type of the behav-
ior underlying them is inherently concurrent, rather than sequential. Popular
online services for instant communication and file-sharing communities exhibit
concurrent interactions among the involved users. Concurrency is also central
to critical e-commerce applications.

These new characteristics of computation have a direct impact in the way
software is conceived. In particular, the non-terminating and concurrent nature
of modern software applications constitute a serious challenge in their verifica-
tion. The traditional approach for software verification, focused on the study
of the resulting outputs with respect to a given set of inputs, is clearly in-
adequate in the context of software pieces that are supposed to run almost
forever. Moreover, traditional techniques also fail in providing comprehensive
mechanisms for describing and reasoning about complex interactions commonly
occurring in applications running in concurrent/mobile environments.

The above discussion suggests a paradigm shift in the goals of software
verification techniques. The main goal of such techniques should be determining
whether software components hold a set of desirable properties, instead of merely
studying their input/output behavior. Some examples of interesting properties
that a system should exhibit include:

• correctness properties, that ensure that software components do what they
are supposed to do;

• safety properties, that guarantee that nothing bad occurs during software
execution;

• liveness properties, that guarantee that something good happens because
of software execution.

Independently of the exact definition of the desired properties (which will de-
pend on the particular features of each system), it is clear that one prefers
general properties, valid for the whole system, instead of particular properties
that are valid only for certain scenarios. This observation suggests that the dis-
ciplined use of formal verification techniques (i.e., those based on mathematical
foundations) is a reasonable research direction.

Concurrency theory is the branch of Computer Science that aims at provid-
ing foundational techniques to describe and reason about concurrent systems
and their behavior. A particularly important class of such techniques is rep-
resented by process calculi : these are “small” languages provided with a few
operators that are intended to capture the essential features of the systems of
interest. Several reasoning techniques on concurrent systems have been devel-
oped on top of process calculi.

Although process calculi were originally conceived for the study of dis-
tributed, mobile communication systems, recent research reveals an increasing
interest on analyzing phenomena in other fields that also exhibit concurrent
behavior. In this way, for instance, process calculi have been used to describe
and analyze systems in such diverse areas as computer music [?, ?, ?], data

Process Calculi to Analyze Emerging Applications in Concurrency 3

integration on the Web [?], Web services [?], biology [?, ?, ?, ?, ?] and secure
communications [?,?,?,?]. Several works have shown how process calculi may
provide new insights on the behavior of systems in such areas. This opens the
way for the development of software tools that put into practice the reason-
ing techniques associated to process calculi; this could constitute an alternative
approach for property verification in the areas of interest.

This paper constitutes an introduction to the modeling of systems using
process calculi. Based on recent work by the authors, this paper illustrates the
use of process calculi in two emerging applications in concurrency: systems bi-
ology and computer security. More specifically, we show how a process calculus
based on the notion of constraint as an element of partial information turns out
to be appropriate in modeling and analyzing biological systems. In a similar
way, we show how a process calculi proposed for describing security protocols
is suitable for the analysis of protocols for Peer-to-Peer (P2P) communication
systems. The most relevant properties in each application are discussed and for-
malized, and the reasoning techniques associated to each calculus are presented.
Representative examples of systems specifications are given.

The rest of this paper is structured as follows. Next, a general introduction
to process calculi is provided. In Section ??, the use of process calculi in Biology
and Security applications is discussed. Section ?? concludes.

2 Process Calculi

Process calculi (also known as process algebras) can be defined as formalisms
devised for the description and analysis of the behavior of concurrent systems;
i.e., systems consisting of multiple computing agents (processes) that interact
with each other. As such, the goal of a process calculus is to provide a rigorous
framework where complex systems can be accurately analyzed, including rea-
soning techniques to verify their essential properties. In this section we discuss
some basic principles on process calculi, including several issues that distinguish
them from other formal models for concurrency and the main approaches to give
meaning to processes. In addition, some verification tools derived from process
calculi will be mentioned.

The nature and features of concurrent systems occurring in the real world
makes it difficult the task of finding a canonical model in which every system
can be accurately represented. In fact, even in the context of a restricted field
(say, distributed systems) a wide variety of different phenomena, occurring at
different levels, can be recognized. The goal is then to identify a set of common
set of underlying principles in the systems of interest, and to define suitable
operators that capture them in a precise way. In other words, a process of
abstraction is required to define meaningful calculi in the simplest possible way.

Process calculi are then abstract specification languages for concurrent sys-
tems. This implies that models of systems abstract from real but unimportant
details that do not contribute in essential system interactions. Abstraction not
only allow designers to better understand the core of a system, but it also turns
out to be necessary for an effective use of reasoning techniques associated to

4 Arbeláez et al.

the calculus.
In addition, process calculi follow a compositional approach for systems de-

scription. This implies that a process calculus model of a system is given in
terms of models representing its subsystems. This favors an appropriate ab-
straction of the main components of the systems and, more importantly, allows
to explicitly reason about the interactions among the identified subsystems. As
we will see later, each calculus assumes a particular abstraction criteria over
systems, which will have influence on the level of compositionality models will
exhibit.

Process calculi also pay special attention to economy. There are few process
constructors, each one with a distinct and fundamental role in capturing the
behavior of systems. A reduced number of constructors in the language helps
to maintain the theory underlying the calculus tractable as well as stimulates a
precise definition of the abstraction criteria that the calculus intends to express.

Let us illustrate the interplay of the above issues by introducing one of the
most representative process calculus for mobility.

2.1 A Process Calculus for Mobile Systems

The π-calculus [?,?], was proposed by Milner, Parrow and Walker in the early
90’s for the analysis of mobile, distributed systems. The ability of representing
link mobility is one of the main advances of the π-calculus with respect CCS
(Calculus for Communicating Systems) [?], its immediate predecessor. In the
π-calculus, the description of mobile systems and their interactions is based on
the notion of name. In principle, a process (an abstraction of a mobile agent)
should be capable of evolving in many different ways, but always maintaining
its identity during the whole computation. In addition, a process should be
capable of identifying other related processes. In the π-calculus a name also
denotes a communication channel, in such a way that communication among
two processes is possible provided that they share the same channel. As a
consequence, in the π-calculus a name abstracts the identity of processes in an
interaction by considering the communication channel each process is related
to.

In the π-calculus, process capabilities are abstracted as atomic actions. They
come in two main flavors:

• x(z), representing the reception (or reading) of the datum z on the channel
x. z is then ready for any subsequent computations.

• xd, denoting the transmission of a datum d over the channel x.

Actions (denoted by α) are used in the context of processes that are constructed
by the following syntax:

P,Q, . . . ::= 0 |
∑
i∈I

αi.Pi | P ‖ Q | !P | (νx)P .

Some intuitions underlying the behavior of these processes follow.

Process Calculi to Analyze Emerging Applications in Concurrency 5

• Process 0 represents the process that does nothing. It is meant to be the
basis of more complex processes.

• The interaction of processes P and Q is represented by their parallel com-
position P ‖ Q. In addition to the individual actions of each process, their
communication is possible, provided that they synchronize on a channel,
as illustrated in the following example.

R = x(y).yz.0 ‖ xw.0

Here, R represents the interaction of two processes sharing a channel x.
The transmission of w through x is complemented by its reception, which
involves recognizing w as y. This is regarded as an atomic computational
step. Afterwards, a datum z is sent, using the received name w as com-
munication channel. Notice that in the context of R, there is no partner
for w in its attempt of transmitting z.

•
∑
i∈I αi.Pi, usually known as a summation process, represents a choice

on the involved Pi’s, depending on the capabilities represented by each
αi. Only when any such processes is ready to interact with another one, a
choice among all the possible interaction options takes place. For instance,
in the process

(x(y).zy.0 + z(y).0 + x(w).w(z).0) ‖ xr.0

the first and third components of the sum are ready to interact with xr.0.
Depending on the choice, different resulting processes are possible. For
instance, if the third component is selected, the resulting interaction would
lead to the process r(z).0.

• Process !P represents the infinite execution (or replication) of process P .
There will be an infinite number of copies of P executing: !P = P ‖ P ‖
P ‖

• Process νxP is meant to describe restricted names. Name x is said to be
local to P and is only visible to it. A disciplined use of restricted names
is crucial in delimiting communication.

The π-calculus is thus a language based in a few simple, yet powerful, ab-
stractions. In addition to the above-mentioned abstraction of name as com-
munication channels that can be transmitted, in the π-calculus the behavior of
mobile systems is reduced to a few representative phenomena: synchronization
on shared channels, infinite behavior and restricted communication. The com-
positional nature of the calculus is elegantly defined by the parallel composition
operator, which is the basis for representing interactions among processes and
the construction of models.

6 Arbeláez et al.

2.2 Key Issues in Process Calculi

There are many different process calculi in the literature, mainly agreeing in
the formal flavor they encourage, as well as in the principles of abstraction,
compositionality and economy discussed before. Main distinctions among these
calculi arise from issues such as the process constructs considered (i.e., the
process languages they define), the methods used to give meaning to process
terms (i.e., semantics), and the methods to reason about process behavior (i.e.,
tools for property verification). In what follows we discuss some of these issues,
following [?].

Process Constructs

The role of process constructs is to faithfully capture the intended phenomena
each process calculus wants to reason about. As a consequence, each calculus
will define different process constructs. Nevertheless, the following elements are
commonly found in process calculi:

• Action constructs for representing atomic, basic actions.

• Composition constructs for expressing the parallel composition of proce-
sses

• Summation constructs for expressing the possibility of diverse courses of
action in a computation

• Restriction constructs, for delimiting the interactions of processes.

• Infinite behavior constructs.

It is interesting to observe how calculi that are in principle quite different co-
incide in these basic issues for their definitions. As an example, consider process
calculi based on Concurrent Constraint Programming (CCP) [?], a model for
concurrency based on partial information. As opposed to the π-calculus, which
defines a point-to-point communication discipline, CCP is a model of shared-
memory communication. Intuitively, this implies that a process in a commu-
nication broadcasts messages to every other agent in the system. In spite of
this important difference, process constructs in CCP-based process calculi are
very similar to those defined in π: there are constructors for parallel composi-
tion, local behavior and infinite execution. Not surprisingly, the only significant
differences arise in the constructs related to communication and synchroniza-
tion: in CCP-based calculi there are operations for increasing the knowledge of
the pool of agents and for querying the current knowledge those agents posses.
ntcc, a CCP-based process calculus will be discussed in Section ??.

Meaning of Processes

Endowing process terms with a formal meaning is crucial in order to analyze
process behavior. There are at least three main approaches used to give meaning
to process terms.

Process Calculi to Analyze Emerging Applications in Concurrency 7

• Operational Semantics An operational semantics interprets a process
term by using transitions that define computational steps. A common
practice is to capture the state of the system by means of configurations,
succinct structures that, in addition to a process term, may include other
relevant information. Transitions are usually labeled by the actions that
originate evolution between configurations. This is commonly denoted as
P

a−→ Q, meaning that process P performs action a and then behaves as
process Q. Operational semantics are then defined by a set of (reduction)
rules that formally define the features of the relation a−→. The set of
reduction rules that constitute the operational behavior of a calculus is
also known as its labeled transition system (or LTS).

As an example, consider the rule that formalizes the communication of in-
teracting processes in the π-calculus, informally discussed in the previous
section:

x(y).P ‖ xz.Q −→ P{z/y} ‖ Q.

In this (labeled) rule, P{z/y} denotes the syntactic replacement of all
occurrences of the name y with the name z in the context of process P .

• Denotational Semantics A denotational semantics interprets processes by
using a function [[·]] which maps them into a mathematical object (e.g., a
set or a category). Definitions of denotational semantics usually involve
the identification of relevant objects that can be observed from process
behavior. A process is then equated to the set of observations that can
be made of it. As an example, consider [[·]]obs, a simple interpretation for
the π-calculus that characterizes a process P by the set of names that
are transmitted during its evolution. For instance, the denotation of the
process R defined before is given by [[R]]obs = {w, z}.
Interestingly, the compositionality principle in process calculi also appears
in denotational semantics definitions, as the meaning of processes is de-
termined from the meaning of its sub-processes. As an example, consider
the denotation of a binary summation:

[[P +Q]]obs = [[P]]obs ∪ [[Q]]obs.

• Algebraic Semantics Algebraic semantics attempt to give meaning by
stating a set of laws (or axioms) equating process terms. Processes and
their operations are then interpreted as structures that obey these laws. In
its more basic use, the algebraic approach can be used to formally equate
processes with minor syntactic differences. This gives rise to a relation
known as structural congruence, that allows for cleaner rule definitions in
the operational semantics. As an example of the kind of “equality” that
can be characterized by means of algebraic semantics, in the π-calculus it
is safe to consider the following set of axioms for parallel composition:

P ‖ 0 ≡ P, P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R.

8 Arbeláez et al.

These axioms succinctly define that parallel composition is a commutative
and associative operation, and that its module is the process 0.

It is important to remark that a process language can have several seman-
tic interpretations. In fact, the combination of two or more approaches is a
common practice, since for instance, an approach can be more appropriate for
intuitive understanding of processes whereas other can be more suitable for
mathematical proofs. This is usually the case of Operational Semantics and
Denotational/Algebraic ones. The use of several semantics motivates a legiti-
mate question, that of determining whether different semantics are equivalent
to each other.

Property Verification

As argued in the introduction, obtaining solid guarantees about the behavior of
systems makes property verification the ultimate goal when formalizing systems
using process calculi. Using process calculi, there are two main approaches for
property verification. The first one pertains to comparing process calculi spec-
ifications. The idea consists in determining whether two process specifications
are equivalent up to some notion of behavioral equivalence. In this way, for
instance, a specification representing a system’s implementation is compared
against a specification that is assumed to have the desired property. If both
specifications are regarded as equivalent, then there are solid elements to con-
sider that the implementation specification holds the property in question.

Naturally, this approach relies on the power and features of the selected be-
havioral equivalence. To get an idea of such an equivalence consider bisimilarity.
Roughly speaking, two processes P and Q are said to be bisimilar if whenever
P performs an action a evolving into P ′, then Q can also perform a and evolve
into a Q′ that is bisimilar to P ′, and similarly with P and Q interchanged. It
is worth noticing that a great deal of what can be said about the comparison
approach for property verification relies on the discriminating power of behav-
ioral equivalences. This implies that there are some equivalences more strict
than others (that is, accept less processes as being equal), and that one should
select the most appropriate one for analysis.

The second approach for property verification is commonly referred to as
model checking, and advocates the use of suitable modal logics to verify prop-
erties of a given (process) specification. The key aspect here is to find a formal
relationship between process terms and formulas of the logic. Several ways of
obtaining such a formal relationship between process terms and logic formulas
have been proposed in the literature; in the next section we will give an in-depth
description of how this is done in the case of ntcc, which is equipped with a
proof system of a linear temporal logic (or LTL).

2.3 Verification Tools based on Process Calculi

The theoretical development of process calculi has led to the development of
software tools and programming languages that implement their most represen-

Process Calculi to Analyze Emerging Applications in Concurrency 9

tative results. This is certainly an attractive option for verification of critical
systems, as engineers count with solid frameworks where design flaws can be
discovered in very early development phases. There is a variety of tools that
take process calculi into practice; they all differ in the kind of specification lan-
guages that are supported (and that are usually very similar to process calculi
specification), the kind of properties they can verify and the user interfaces they
provide, among other features. Here we summarize the main features of some
of these tools, namely the programming language Pict, the Edinburgh Concur-
rency Workbench (CWB) and the Concurrency Workbench of the New Century
(CWB-NC).

Pict [?] is a concurrent programming language based in the π-calculus. It is
a functional programming language with static typing, based on a core language
that corresponds to an asynchronous variant of the π-calculus. Several intuitive
additions to this core language are available, including basic data structures
and concurrent objects.

The Edinburgh Concurrency Workbench (CWB) [?], is a popular automated
tool for manipulation and analysis of concurrent systems. The base description
languages for CWB are CCS and its synchronous variant SCCS. Using CWB it
is possible to:

• perform analysis of semantic equivalences among specifications;

• define propositions in a modal logic and check whether a given process
satisfies a specification formulated in this logic;

• derive automatically logical formulas which distinguish nonequivalent pro-
cesses;

• interactively simulate an agent’s behavior.

Finally, the Concurrency Workbench of the New Century (CWB-NC) [?]
is a tool that offers several approaches for verification, providing support for
different languages, including CCS and LOTOS [?]. The simplest of such ap-
proaches is reachability analysis: the tool is provided with a formal specification
of the system and with a logic formula describing an undesirable state of it. The
tool then explores every possible state of the system and checks if such an state
can be reached. If so, the user is provided with an execution sequence lead-
ing to such an state. The second approach is somehow related and consists in
performing a model checking process over a system description. This descrip-
tion is now analyzed with respect to a temporal logic formula that describes a
property that the system should exhibit during its execution. Finally, a third
technique available pertains to the above-mentioned equivalence-based approach
for property verification. Efficient algorithms for equivalence checking and rou-
tines for performing these types of verification have been implemented. The
tool also provides diagnostic information for explaining why two systems fail to
be related by a given semantic equivalence.

10 Arbeláez et al.

3 Applications

In this section we illustrate the use of process calculi in Systems Biology and
Security in Communication Protocols. In order to do so, a particular calculus
for each application area is presented and described. An example extracted from
real scenarios is modeled and verified. Related work in using process calculi in
each area is also mentioned.

3.4 Systems Biology

The recent progress in molecular biology has allowed to describe the structure
of many components making up biological systems (e.g., genes and proteins) as
isolated entities. Instead of being alone, these entities are part of complex bio-
logical networks present at the cellular environment (such as genetic regulatory
networks) whose aim is to define and regulate cellular processes. The current
challenge is to move from molecular biology to systems biology [?], in order to
understand how these individual components or entities integrate among them
in the networks they shape. Once this integration has been understood, it will
be then possible to discover how these entities perform their tasks.

The complexity and size of biological systems has motivated the use of com-
putational models that allow to abstract their behavior and make their study
easier. In this way, the inherent concurrent behavior of biological systems has
encouraged the use of process calculi as a suitable description language. Reasons
supporting this claim could be inferred from the features of calculi, already dis-
cussed. Next we review some works in which process calculi have been exploited
in the biological context.

Most of the work using process calculi in biology have used formalisms such
as the π-calculus and the Ambient calculus [?], or some extensions of them.
Some representative pieces of work in such a direction are [?, ?, ?]. In other
cases, new process calculi have been proposed for modeling of more particular
biological phenomena and systems. For instance, calculi to reason about inter-
actions among membranes [?], interactions among proteins [?], reversibility in
bio-molecular processes [?] and hybrid biological systems [?] can be found in
the literature.

However, apart from [?] which uses hybrid concurrent constraint program-
ming, none of the above calculi have tackled the problem of modeling biological
systems of which only partial information about their behavior at system level
is available. This is a significant group of systems, if we consider that lots of
biological phenomena are still being discovered and/or investigated. For this
reason, we have explored the use of CCP as a possible computational model for
representing this kind of information in the biological context. In this way, our
interest is centered in the study of process calculi based on constraints, identi-
fying advantages in their use that would make the study of biological systems
easier.

In particular, in [?] we have argued for the use of ntcc, a temporal CCP
process calculus, for describing biological systems. ntcc comprises a variety of

Process Calculi to Analyze Emerging Applications in Concurrency 11

features for describing, simulating and reasoning about complex biological sys-
tems. Some of these features include: the natural use of concurrent agents (i.e.,
processes) for modeling biological entities, the explicit notion of time for describ-
ing the evolution of dynamic biological systems, constraints as a formal mecha-
nism for representing partial information in the state of systems, asynchronous
and non-deterministic operators for modeling partial information about the be-
havior of systems and the possibility of including quantitative information for
parameterizing models with actual values coming from experimentation.

A crucial advantage is that this theoretical framework for studying biological
systems can be implemented in a CCP programming language such as Mozart
[?]. This allows to observe and analyze, at system level, the behavior of models
proposed using the calculus.

Background

In this section we give a concise introduction to CCP and ntcc, the process
calculus that we have used for describing biological systems. We emphasize on
the opportunities and advantages of using ntcc in this context.

Let us first define some basic notions of CCP. CCP is a computational for-
malism for describing the behavior of concurrent systems. In CCP all the (par-
tial) information is monotonically accumulated in a so-called store. The store
keeps the knowledge about the system in terms of constraints, or statements
defining the possible values a variable can take (e.g., x + y ≥ 7). Concurrent
agents (i.e., processes) that are part of the system interact with each other using
the store as a shared communication medium. They have two basic capabilities
over the store, represented by tell and ask operations. While the former adds a
piece of information about the system, the latter queries the store to determine
if some piece of information can be inferred from its current content.

One of the most distinguishing features of CCP is that it provides a unified
framework where processes have a dual perspective: the traditional operational
view of process calculi and a declarative one based on logic. This allows CCP
to take advantage of techniques and tools from both process calculi and logic
to model and reason about concurrent systems.

The ntcc process calculus is a temporal extension of CCP. The process
constructs of the calculus naturally capture the main features of timed and
reactive systems. In particular, ntcc allows to model:

• unit-delays to explicitly model pauses in system execution.

• time-outs to execute a process in the next time unit if in the current one
a piece of information cannot be inferred from the store.

• synchrony to control and coordinate the concurrent execution of multiple
systems.

• infinite behavior to represent the persistent execution of a system.

• asynchrony to represent unbounded but finite delays in the execution of
a system.

12 Arbeláez et al.

• non-determinism to express the diverse execution alternatives for a system
from the same initial conditions.

We now proceed to summarize the main features that ntcc has to offer to
systems biology.

Theoretical Opportunities There are some conceptual features of ntcc
that are specially important in the biological context.

• Time in Modeling of Complex Dynamic Systems In some biological sce-
narios it is important to know the initial and final states of a system.
Nevertheless, in other situations it is mandatory to be able to analyze the
evolution of the system in time. This is why having a description language
with an explicit notion of time is fundamental for both achieving the con-
trol of the modeled systems and supervising their evolution step-by-step.
ntcc is equipped with constructs that allow to explicitly control temporal
features of modeled systems.

• Partial information As mentioned before, this kind of information arises
naturally in the biological context since the structure and behavior of
many biological phenomena are nowadays a matter of research. Two main
kinds of partial information can be identified in biological systems: quan-
titative and behavioral. While partial quantitative information usually
involves incomplete information on the state of the system (e.g., the set
of possible values for a variable, the probability for a system to evolve
to a certain future state), partial behavioral information is related to un-
certainty associated to the behavior of interactions (e.g., the unknown
relative speeds on which two systems interact, the time interval during
which a medicine is effective).

In ntcc, whereas partial quantitative information is represented with the
aid of constraints, partial behavioral information is described by means
of the asynchronous and non-deterministic process constructs in the cal-
culus. The appropriate use of these elements for describing biological
systems can build up, with a certain abstraction degree, rather complex
biological patterns of behavior.

• Verification of Biological Properties As discussed before, perhaps the
most important feature of process calculi is that their solid mathemati-
cal foundations allow to verify properties of the systems they model. In
the case of ntcc such properties can be verified following a logic-based
approach, expressing properties using a linear-temporal logic (LTL) and
deriving proofs using a proof system associated with the calculus.

Practical Opportunities Complementary to these advantages, ntcc
presents a useful feature in practical terms, as systems represented by means
of the calculus can be easily implemented and their behavior observed using
ntccSim [?], a simulation tool of ntcc processes. Indeed, ntccSim uses Mozart
(a CCP-based programming language) to implement the rules of the operational

Process Calculi to Analyze Emerging Applications in Concurrency 13

Figure 1: Discrete Reactive Computation in ntcc

semantics of ntcc. Since these rules formalize process behavior, in ntccSim it
is possible to execute ntcc specifications so to observe and analyze systems
described using the calculus.

A Process Calculus with Explicit Time and Constraints

ntcc is a temporal concurrent constraint calculus suitable to model non-deter-
ministic and asynchronous behavior. As such, it is particularly appropriate to
model reactive systems, those that compute by reacting to stimuli coming from
its environment. As mentioned in the previous section, one of the main features
of ntcc is that it is equipped with a proof system for verifying linear-temporal
properties of ntcc processes. In this section we briefly describe the syntax,
operational semantics and proof system of ntcc, referring the reader to [?, ?]
for further details.

A fundamental notion in CCP-based calculi is that of a constraint system.
Basically, a constraint system provides a signature from which syntactically
denotable objects in the language called constraints can be constructed, and an
entailment relation (|=) specifying interdependencies among such constraints.
More precisely, a constraint system is a pair (Σ,∆) where Σ is a signature of
function and predicate symbols, and ∆ is a decidable theory over Σ (i.e., a
decidable set of sentences over Σ with at least one model). The underlying
language L of (Σ,∆) contains the symbols ¬,∧,⇒,∃, true and false which
denote logical negation, conjunction, implication, existential quantification, and
the always true and always false predicates, respectively. Constraints, denoted
by c, d, . . . are first-order formulas over L. We say that c entails d in ∆, written
c |=∆ d (or just c |= d when no confusion arises), if c ⇒ d is true in all models
of ∆. For operational reasons we shall require |= to be decidable.

In ntcc time is divided into discrete intervals (or time units), each of them
having its own (constraint) store. In this way, each time unit can be understood
as a reactive entity, where a process Pi receives a stimuli ei (i.e., a constraint)
from the environment. The process Pi is then executed considering this input,
responding with some output ri (that is, new constraints) once no further pro-
cessing over the store is possible. Computation in the next time unit is then
based on a residual process resulting from Pi and on new inputs provided by
the environment. Figure ?? illustrates this kind of computation for three time
units.

Process Syntax Processes P , Q, . . .∈ Proc are built from constraints c ∈ C
and variables x ∈ V in the underlying constraint system by:

14 Arbeláez et al.

P,Q, . . . ::= tell(c) |
∑
i∈I

when ci do Pi | P ‖ Q | local x in P

| next (P) | unless c nextP | ? P | !P

Below we provide some intuitions regarding the behavior of ntcc processes
in the biological context. For the sake of space, some formal details are elided
from this presentation.

Adding and Querying (Partial) Information Process tell(c), the simplest
operation to express partial information, adds a constraint c into the current
store, thus making it available to other processes in the same time interval.

In the biological context, tell operations allow to represent at least two kinds
of partial information statements: ground rules and state definition statements.
The first ones precisely state certain conditions that apply during the life of the
biological system. A clear advantage here w.r.t. other calculi for biology is
that these conditions can be expressed by exploiting the available (possibly
incomplete) knowledge.

Remarkably, the declarative flavor in this kind of statements could favor
the definition of essential properties in (biological) models. Complementary to
ground rules, state definition statements refers to those constraints intended to
define the exact values for the variables in the system. This is particularly useful
when one exactly knows the set of possible states of the system at a given time;
series of such statements (for different time units) thus constitute a detailed
view of the behavior of the system.

Complementary to tell operations, guarded operations of the form when c do P
constitute the basic means for querying (or asking) information about the state
of a system. Intuitively, a process when c do P queries the current constraint
store: if c is present in such a store then the execution of P is enabled. The
“presence” of c depends on the inference capabilities associated with the store.
That is, a particular constraint could not be explicitly present in the store, but
it could be inferred from the available information.

Non-deterministic Choices Non-determinism is a valuable way of repre-
senting several possible courses of action from the same initial state without
providing any information on how one of such courses is selected.

In ntcc, non-deterministic behavior is obtained by generalizing processes
of the form when c do P : a guarded-choice summation

∑
i∈I when ci do Pi,

where I is a finite set of indexes, represents a process that, in the current
time interval, must non-deterministically choose one of the Pj (j ∈ I) whose
corresponding constraint cj is entailed by the store. The chosen alternative,
if any, precludes the others. If no choice is possible then the summation is
precluded. We shall use skip to denote the process

∑
i∈I when ci do Pi when

I = ∅.
In the biological context, the combination of guarded choices and partial

information represent an appropriate mechanism to formalize the inherent un-
predictability in system interactions. In this sense, non-determinism is a way of
explicitly representing partial behavioral information.

Process Calculi to Analyze Emerging Applications in Concurrency 15

Communication The concurrent execution of two processes P and Q is
represented by the parallel composition P ‖ Q. We use

∏
i∈I Pi, where I is a

finite set of indexes, to denote the parallel composition of all Pi.
Local Information Process local x in P behaves like P , except that all the

information on x produced by P can only be seen by P , and the information
on x produced by other processes cannot be seen by P .

Basic Timed Constructs ntcc provides two basic time operators, next (P)
and unless c next (P). Let us analyze them separately. next (P) represents the
activation of P in the next time unit. Hence, a move of next (P) is a unit-delay
of P . next (P) can be also considered as the simplest way of expressing the
dynamical behavior over time. This is fundamental in ntcc, since information
is not automatically transferred from one time interval to the next. We shall
use nextn (P) as an abbreviation for next (next (. . .next (P)) . . .)), where
next is repeated n times.

In the context of partial information, to be able to reason about absence of
information is both important and necessary. Although sometimes it is possible
to predict some of the possible future states for a system, usually there is a strong
need of expressing unexpected behavior. In this kind of scenarios, processes of
the form unless c nextP may come in handy: P will be activated only if
c cannot be inferred from the current store. The unless processes thus add
(weak) time-outs in the execution, i.e., they wait one time unit for a piece of
information c to be present and if it is not, they trigger activity in the next
time unit.

Asynchrony The ? operator allows to express asynchronous behavior through
time intervals. Process ?P represents an arbitrary long but finite delay in the
activation of P . This kind of behavior therefore constitutes another instance
of partial information: in addition to the partial information on the variables
that are part of the state of the system (and that is expressed by the operators
discussed above), the ? operator allows to express partial information on the
time units where processes are executed. This is particularly interesting when
describing (biological) processes that interact at unknown relative speeds.

Persistent Behavior Somehow opposed to the eventual behavior enforced
by asynchronous behavior, persistent (or infinite) behavior serves to express
conditions that are valid in every possible state of the system. The replicated
process !P represents P ‖ next (P) ‖ next2(P) ‖ . . ., i.e. unboundedly many
copies of P but one at a time. As such, persistent behavior is an appropriate
way of enforcing conditions stating ground rules of the systems of interest.

Operational Semantics The intuitive behavior of ntcc processes described
above is formalized by means of an operational semantics that considers transi-
tions between process-store configurations of the form 〈P, c〉 with stores repre-
sented as constraints. The transitions of the semantics are given by the relations
−→ and =⇒. They are formally defined in [?]. Intuitively, an internal transition
〈P, d〉 −→ 〈P ′, d′〉 should be read as “P with store d reduces, in one internal step,
to P ′ with store d′ ”. The observable transition P

(c,d)
====⇒ R should be read as

“P on input c, reduces in one time unit to R and outputs d”. The observable

16 Arbeláez et al.

transitions are obtained from terminating sequences of internal transitions.
Let us now consider an infinite sequence of observable transitions (or run)

P = P1
(s1,r1)
====⇒ P2

(s2,r2)
====⇒ P3

(s3,r3)
====⇒ This sequence can be interpreted

as an interaction between the system P and an environment. At a time unit
i, the environment provides a stimulus si and Pi produces ri as a response. If
α = s1.s2.s3 . . . and α′ = r1.r2.r3 . . ., then the above interaction is represented

as P
(α,α′)

====⇒ω.
Alternatively, if α = trueω, we can interpret the run as an interaction among

the parallel components in P without the influence of an external environment
(i.e.,each component is part of the environment of the others). In this case α
is called the empty input sequence and α′ is regarded as a timed observation
of such an interaction in P . We will say that the strongest postcondition of a
process P , denoted sp(P), denotes the set of all infinite sequences that P can

possibly output. More precisely, sp(P) = {α′ | for some α : P
(α,α′)

====⇒ω}.

A Logic Approach for Property Verification The Linear-time Temporal
Logic associated with ntcc is defined as follows. Formulas A,B, . . . ∈ A are
defined by the grammar:

A,B, . . . := c | A ⇒̇A | ¬̇A | ∃̇xA | ◦A | �A | ♦A.
Here c denotes an arbitrary constraint which acts as an atomic proposition.

Symbols ⇒̇, ¬̇ and ∃̇x represent linear-temporal logic implication, negation and
existential quantification. These symbols are not to be confused with the logic
symbols ⇒, ¬ and ∃x of the constraint system. Symbols ◦, � and ♦ denote
the linear-temporal operators next, always and eventually. We use A ∨̇B as an
abbreviation of ¬̇A ⇒̇B and A ∧̇B as an abbreviation of ¬̇(¬̇A ∨̇ ¬̇B). The
standard interpretation structures of linear temporal logic are infinite sequences
of states. In ntcc, states are represented with constraints, thus we consider as
interpretations the elements of Cω. When α ∈ Cω is a model of A, we write
α |= A.

We shall say that P satisfies A if every infinite sequence that P can possibly
output satisfies the property expressed by A. A relatively complete proof system
for assertions P ` A, whose intended meaning is that P satisfies A, is given in
Table ??. We shall write P ` A if there is a derivation of P ` A in this system.

Example: Modeling a biological mutation using ntcc

This section illustrates the most important ntcc features for describing biolog-
ical systems. We shall present the use of ntccSim to observe the behavior of an
ntcc model of the system. Finally, a property of such a model will be verified.

In this example, we are interested in modeling the control system of a biolog-
ical network, including a set of genes. To do so we define three ntcc processes:
StartControl, MutatedGene and WildGene. The first process indicates the
number of molecules interacting with the control region at the start of the

Process Calculi to Analyze Emerging Applications in Concurrency 17

LTELL tell(c) ` c LSUM
∀i ∈ I Pi ` AiP

i∈I when ci do Pi `
_̇

i∈I
(ci ∧̇Ai) ∨̇

˙̂
i∈I
¬̇ ci

LPAR
P ` A Q ` B
P ‖ Q ` A ∧̇B

LUNL
P ` A

unless c next P ` c ∨̇◦A
LREP

P ` A
!P ` �A

LLOC
P ` A

local x in P ` ∃̇x A

LSTAR
P ` A
?P ` ♦A

LNEXT
P ` A

next (P) ` ◦A LCONS
P ` A
P ` B

if A ⇒̇B

Table 1: A proof system for (linear-temporal) properties of ntcc processes

Figure 2: Molecular concentration in a DNA region of a mutated gene

study of the system. The second one defines the system behavior under mu-
tated conditions. The last one represents the system behavior in wild or normal
conditions. These processes can be formalized in ntcc as follows:

StartControl
def= tell(x = n)

MutatedGene
def= ? ! (tell(mut = 1) ‖ next (tell(x = fm)))

WildGene
def= ! unless mut = 1 next tell(x = fw)

ControlRegion
def= StartControl ‖MutatedGene ‖WildGene

where x is a variable representing the cellular concentration of molecules
interacting with the control region of the set of genes, and n a real number as
a starting value.

On the one hand, the process MutatedGene establishes that a mutation
will eventually occur in the gene in an undetermined future time unit and, as a
consequence, the behavior of the system will be defined by the constraint x =
fm, where fm is a function determining an incorrect behavior in the gene control
region. On the other hand, the process WildGene states that the behavior of
the control region is represented by the constraint x = fw unless the mutation
occurs (i.e., which is represented by the constraint mut = 1). Function fw
represents the behavior of the system in wild conditions. Figure ?? illustrates
the behavior of the system; it was obtained using ntccSim, with n = 0.

A logic-based approach for verifying biological properties In this section we
will verify a system property using the inference system associated with ntcc.
As a case of study, we will verify that when the mutation occur, variable x will
be determined only by function fm. Formally, we wish to verify the following
formula:

ControlRegion ` ♦�x = fm

18 Arbeláez et al.

The formulas for processes StartControl, MutatedGene and WildGene are:

StartControl ` x = n
MutatedGene ` ♦�(mut = 1 ∧̇◦x = fm)
WildGene ` �(mut = 1 ∨̇◦x = fw)

StartControl ` x = n
LTELL

MutatedGene ` ♦�(mut = 1 ∧̇◦x = fm)
LRULES1

StartControl ‖MutatedGene ` (x = n) ∧̇ (♦�(mut = 1 ∧̇◦x = fm))
LPAR

where LRULES1 denotes the systematic application of rules LSTAR, LREP,
LPAR, LNEXT and LTELL of the proof system over process MutatedGene. For
the sake of space, we assume the following abbreviations: WG = WildGene,
SC = StartControl and MG = MutatedGene.

WG ` (�(mut = 1 ∨̇◦x = fw))
LRULES2

SC ‖MG ` (x = n) ∧̇ (♦�(mut = 1 ∧̇◦x = fm)))

WG ‖ SC ‖MG ` (�(mut = 1 ∨̇◦x = fw)) ∧̇ (x = n) ∧̇ (♦�(mut = 1 ∧̇◦x = fm))
LPAR

where LRULES2 represents the application of rules LREP, LUNL and LTELL

over process WildGene. Finally, we can perform the following deduction:

ControlRegion ` (� (mut = 1 ∨̇◦x = fw)) ∧̇ (x = n) ∧̇ (♦� (mut = 1 ∧̇◦x = fm))

ControlRegion ` � (mut = 1 ∨̇◦x = fw) ∧̇♦� (mut = 1 ∧̇◦x = fm)
LCONS

ControlRegion ` ♦� ((mut = 1 ∨̇◦x = fw) ∧̇ (mut = 1 ∧̇◦x = fm))
LCONS

ControlRegion ` ♦� (mut = 1 ∧̇ (mut = 1 ∧̇◦x = fm))
LCONS

ControlRegion ` ♦�◦x = fm
LCONS

ControlRegion ` ♦�x = fm
LCONS

The above logical expression verify that the constraint x = fm will define the
behavior of the system in an undetermined future time, and that this behavior
will continue forever.

In this way, we have shown how the behavior of a system can be formally an-
alyzed in two ways: (i) following the ntcc operational semantics in a mechanical
way by using ntccSim (see Figure ??) and (ii) by means of a logical-temporal
proof derived with the inference system associated with ntcc. Concerning logic-
based proofs, a remarkable aspect to consider here is that certain aspects of
systems might be difficult to study by just using simulations; in our example,
it is possible that simulations do not reveal the presence of a mutation, as it
could occur in a very long time. As a consequence, in this case the logic proof
can be regarded as being more effective, as it can reveal the actual behavior of
the system.

It is worth mentioning other works related to the use of ntcc and CCP for the
study of biological systems. In [?] a study of the state of the art in the modeling

Process Calculi to Analyze Emerging Applications in Concurrency 19

of biological systems using process calculi is presented. The advantages of using
CCP in biology are analyzed there. The paper [?] offers a detailed explanation
of how ntcc process constructs can be used to model biological systems. A
biological system for ion transport is also modeled and verified there. In [?,?]
a complete ntcc model of the lactose operon genetic regulatory network is
proposed. Similarly to the example discussed here, a stability property that
cannot be ensured by simulation is formally verified using the proof system
associated with the calculus. Finally, [?] presents a summary of the work on
ntcc in systems biology.

3.5 Security in Communication Protocols

The security of information has always been one of the main concerns in social
behavior. The assurance of a personal secret which cannot be revealed to some-
one unauthorized, and the notion of trust have been relevant concerns since the
beginnings of commerce and wars. The emergence of global communications,
electronic processing, and distributed computation have increased the relevance
of these concerns. Recent data from the Internet Fraud Crime report [?] is just
but one example of the strong influence secure communications have in business:
about 228.400 complaints (with quantitative losses of US$183,14 Millions) were
reported to be related with threats including electronic fraud, identity theft and
even hacking.

A wide variety of (automated) tools have been developed to overcome se-
curity risks, including firewalls, access control mechanisms and cryptographic-
based software. Nevertheless, these mechanisms by themselves are not enough
to provide security warranties; the open nature of the communications and
the inherent vulnerabilities of distributed systems make it essential to provide
higher levels of assurance for participants of privacy-sensitive communication
processes. This is why security protocols were created: these are sets of rou-
tines that define a precise set of steps that participants (also known as principals,
agents or parties) have to follow in order to establish some security goals during
communications.

There exist diverse kinds of interesting properties related to the behavior of
security protocols (security properties), and usually aim at achieving different
objectives [?]. Some representative examples include:

• secrecy, or the guarantee that a secret message never appears unprotected
on the medium;

• authentication, or the guarantee that no principal is impersonated by an
unknown or malicious agent;

• anonymity, or the guarantee that the responsibles of actions cannot be
identified.

In this context, the use of process calculi for the analysis of security proto-
cols appears as a promising approach. Several facts support this claim. First,
the open nature of network scenarios is naturally captured by process calculi

20 Arbeláez et al.

models, allowing for the inclusion of malicious attackers inside the environment.
Second, the abstraction principle of process calculi helps engineers and design-
ers to focus in the communication components of the protocol, leaving aside
unimportant implementation details. In addition, the compositional approach
of process calculi specifications allows to accurately describe network agents,
their capabilities and complex interactions. Finally, a process calculi approach
for the modeling of protocols would allow to (automatically) verify their security
properties by means of the reasoning techniques associated with the calculi.

The above intuitions have been widely studied in the literature. Below we
provide a summary of the most representative efforts in this direction.

One of the first attempts involves the use of the CSP process algebra [?].
In CSP, systems of concurrent agents interact via message exchange. It is
intended to be a multipurpose algebra: several specialized theories could be
constructed on the top of its semantic model. In this way, concrete formalisms
can be designed and verified using this theory, with an environment especially
crafted for each purpose. Several approaches for analyzing security properties
in protocols [?, ?] have been developed. In such works, network models and
attacker abilities are abstracted as processes, whereas security properties are
defined as predicates over the execution traces of such processes.

Another significant approach is the one that uses the π-calculus as specifi-
cation language. Here protocol participants are abstracted as concurrent proce-
sses that exchange messages through channels. Remarkably, secret generation
is abstracted by means of restricted names. In this way, for instance, process
(νs)(A ‖ B) represents a secret s that is shared by interacting agents A and
B. Although this approach is clearly incomplete for modeling purposes in the
security context, it served as inspiration for several extensions to the calculus.
In fact, the Spi calculus [?] —one of such extensions— allows for the expres-
sion of cryptographic operations, using the behavioral equivalence approach for
property verification. Other extensions include the applied π-calculus [?], a
variant where operations over functions and data-types are treated in a general
framework, thus enabling the use of complex cryptographic functions within
protocol specifications. Recent works ([?]) involve the combination of a version
of this applied π-calculus, type systems and logic interpretations of processes
to analyze security protocols from a logic perspective: formal specifications of
protocols are translated into logic clauses to perform reachability analysis about
their properties.

Other process calculi have adopted an operational view of processes by using
different foundations such as Petri Nets. One of such calculi is the Security
Protocol Language (SPL) [?]. Next we provide an in-depth introduction to it.

A Process Calculus for Security Protocols

SPL is a process calculus that models security protocols as the asynchronous
exchange of messages between agents. It is based on a persistent network model,
in which every transmitted message is remembered for an unlimited period of
time; this represents the power of an attacker to infinitely collect information

Process Calculi to Analyze Emerging Applications in Concurrency 21

Variables
v ::= x |Y (names)

k ::= Pub(v) |Priv(v) |Key(~v) (keys)

M ::= v | k | (M,M ′) | {|M |}k (messages)

Processes
(Binding) P ::= out new(~x) M .P (secret generation)

| in pat ~x~χ~ψM .P (pattern-matching input)

(Replication) | ‖i∈I Pi (process composition)

| !P (infinite behavior)

Table 2: Syntax of SPL

from the network. SPL provides an event-based operational semantics, which
allows to represent protocol evolutions in a clear and intuitive way, as well as an
intuitive set of proof techniques, that allow to verify security properties by taking
advantage of the semantics. SPL has been successfully used in the analysis of
several communication protocols (see, e.g., [?, ?,?]). Next we provide a formal
introduction to the SPL process calculus, following [?, ?].

Syntax Let us start by giving the syntactic sets of the calculus:

• An infinite set N of names, denoted by ~x. Names range over newly-
generated values (known as nonces) and agent identifiers. It is common
to denote agent identifiers with capital letters.

• Variables over names (~x), keys (~χ) and messages (~ψ).

• A set of processes P,Q,R,

In addition to these elements, it is possible to give a complete notion of mes-
sages by defining message tuples (denoted (M1 ,M2)), messages ciphered with
a key (denoted {|M |}x, x being the key), and messages involving cryptographic
primitives for handling public and private keys (denoted Pub(v), P riv(v) and
Key(~v), respectively).

SPL processes can be grouped in two types: replication constructions that
allow for composition of processes and binding processes that restrict variables
in different contexts. While the former group is defined in the expected way, in
the latter the output process

out new(~x) M .P

binds the vector ~x to a set of fresh values ~n, outputting the message M [~n/~x]
to the network while defining the evolution of P into P[~n/~x]1. In addition, the
process

in pat ~x~χ~ψM .P
1Notice that P [~n/~x] has an analogous meaning to the P{x/z} notation explained before:

all the occurrences of the message ~x in the context of process P are replaced by ~n.

22 Arbeláez et al.

acts as a pattern-matching input, receiving every message from the network
that match the pattern M , binding the new variables ~x, ~χ, ~ψ with the received
contents. Table ?? summarizes these syntactic elements.

Operational Semantics One of the main characteristics of SPL is the inclu-
sion of a dual operational semantics to analyze the evolution of a process during
its execution. A labeled transition system for SPL is defined over a set of con-
figurations of the form 〈p, s, t〉, where p is a closed (i.e., variable-free) process
term, s a subset of names, and t a subset of variable-free messages (i.e., the
messages available in the network). The reduction rules allow to analyze how
the information is included and how process are affected by such an inclusion.
They are defined as follows:

• The output rule, labeled by out new(~n) M [~n/~x], defines the evolution of a
process out new(x) M .P as the process P[~n/~x], including the information
in the fresh variables ~n in the set of names and augmenting the set of
messages with the information transmitted in M .

• The input rule is labeled by inM [~n/~x,~k/~χ, ~N/~ψ] and allows the evolution
of a process in pat ~x~χ~ψM .P as the process P, with the new variables
instantiated from the contents of M .

• The parallel composition rule (labeled by j : α, being j the index of one of
the processes involved in the composition) decomposes an indexed com-
position process ‖i∈I Pi into each of its subprocesses for further analysis.

Although this transition semantics is an appropriate method of representing
process behavior, it is not fine enough to describe dependencies between events,
or to support typical proof techniques such as those based on maintaining in-
variants along the trace of the execution of protocols. For this reason, SPL
provides an additional semantics based in events that makes protocol events
and their dependencies more explicit.

SPL event-based semantics relies on a variant of persistent Petri nets, so-
called SPL-nets [?], which define events in the way they affect conditions, and
how the models stated evolve using a general methodology (so-called token
games). The interested reader may find full details about Petri Nets and per-
sistent SPL-nets in [?] and [?], respectively. With the foundations of SPL-nets,
every action present in a protocol can be described as a transition that gener-
ates a set of typed conditions (Petri net events). These events can be grouped
in three different kinds (see Figure ??):

• Control conditions (ce and ec), representing the current state of execution
of a given process.

• Name conditions (ne and en), that denote the names generated along the
network.

Process Calculi to Analyze Emerging Applications in Concurrency 23

Figure 3: Events and transitions of SPL event based semantics: pi and qi denote
control conditions, ni and mi name conditions and Ni, Mi output conditions.

• Output conditions (oe and eo), the pieces of information sent through the
network. An important characteristic is the natural persistence of these
kind of events, which models the fact that information always can be
accessed form the network once it is published.

Notice that all the actions that can be performed using the transition se-
mantics can be related to transitions in the event-based semantics with three
typical actions: output, input and parallel composition transitions.

To illustrate the elements of the event semantics, consider a simple output
event e = (Out(out new(~x) M);~n), where ~n = n1 . . . nt are the distinct names
to match with variables ~x = x1 . . . xt. The action act(e) corresponding to this
event is the output action out new ~nM [~n/~x]. Conditions associated to this
event are:

ce = 〈out new(~x) M .p, a〉 oe = ∅ ne = ∅
ec = 〈Ic(p[~n/~x])〉 eo = {M [~n/~x]} en = {n1, . . . nt},

where ∗e and e∗ represent the pre and postconditions of the event e, respec-
tively. Ic(p) stands for the initial control conditions of a closed process; it is
defined inductively as Ic(X) = {X} if X is an input or an output process, and
as Ic(‖i∈I Pi) =

⋃
i∈I{i : c | c ∈ Ic(Pi)} otherwise.

Proving Security Properties in SPL Proofs of security properties in SPL
follow a general methodology. Once a protocol has been modeled, an attacker
capable of altering its correct execution is included in the obtained model. This
attacker relies on the Dolev-Yao threat model [?], in which the attacker is a ma-
licious entity capable to overhear, intercept, introduce and synthesize messages
over the network. An SPL representation of a powerful attacker can be seen in
Table ??.

After that, a property is defined using a general set of proof principles,
which state a general set of theorems available for the verification of security
properties. Counting with these general principles is one of the advantages SPL
has over other process calculi in terms of property verification. Some of the
available proof principles are the following (see [?] for a formal definition):

• Well-Foundedness: If a property P holds in the initial condition i and then
is violated at a stage t, then there is an event that breaks the property
between i and t.

• Freshness: Only one copy of a name is generated in a run of the protocol.

• Control Precedence: There exists a casual dependency between control
conditions.

24 Arbeláez et al.

Attacker Capability SPL formalization

Compose messages Spy1 ≡ inψ1 .inψ2 .outψ1 , ψ2

Decompose a message Spy2 ≡ inψ1 , ψ2 .outψ1 .outψ2

in sub-components

Encrypt any message Spy3 ≡ in x .inψ.out {|ψ |}Pub(x)

with available keys Spy4 ≡ in Key(x , y).inψ.out {|ψ |}Key(x ,y)

Decrypt messages Spy5 ≡ in Priv(x).in {|ψ |}Pub(x).outψ
with available keys Spy6 ≡ in Key(x , y).in {|ψ |}Key(x ,y).outψ

Sign messages with available keys Spy7 ≡ in Priv(x).inψ.out {|ψ |}Priv(x)

Verify signatures with available keys Spy8 ≡ in x .in {|ψ |}Priv(×).outψ

Create new random values Spy9 ≡ out new(~n)~n

Table 3: SPL spy model

• Input/Output Precedence: There exists a casual dependency between out-
put conditions.

• Message Surroundings: There exists a relation between messages and sub-
messages at a given level of encryption.

The final step in the proof consists in deriving a contradiction. First, an
event in which the property does not hold is assumed. For instance, if we wish
to proof secrecy of a message, we assume that it is accessed by an attacker.
Then, using the operational semantics and following event dependencies, one
tries to find an event that breaks the property. If such an event cannot be
reached, then it can be concluded that the protocol holds the desired property.

Example: Modeling and Verifying P2P Systems using SPL

P2P architectures are one of the most revolutionary changes in communication
networks. They allow for collaboration between two different entities no matter
the barriers between them. In P2P systems, every node is connected to the
network in a decentralized manner, acting simultaneously as a requester, for-
warder, and source of information. This feature has broaden the applicability of
these systems, constituting a novel approach for distributed computations. P2P
have become a major force in nowadays computing world because of its bene-
fits, such as architecture cost, scalability, viability, and resource aggregation of
distributed management infrastructures. These benefits have been extensively
exploited in multiple application areas, such as information retrieval, routing
and content discovery, providing a huge set of tools based on P2P architectures
(see, e.g., [?,?,?,?,?]). However, these architectures have to face several secu-
rity risks: the open nature of the network brings the opportunity to attackers
to inflict damage in the protocol, by, for instance, reading privacy-sensitive in-
formation in transmit or writing fake information that could affect the correct
execution of the protocol. Also, the multiplicity of the roles present in each
agent implies that the communication must ensure the same level of security at
each phase, no matter who receive the information.

Process Calculi to Analyze Emerging Applications in Concurrency 25

Recently, we have shown that SPL provides a useful approach to analyze
these kind of systems [?]. The compositionality of the calculus allows to model
complex scenarios where attackers can infringe damage in each of the phases of
the protocol. Also, the persistent network model turns to be useful to express
the possibility attackers have of listening for a message over an infinite amount
of time. Further, process replication allows to model infinite scenarios, stressing
the level of complexity in security.

We shall illustrate this by modeling MUTE, a P2P protocol for content-
sharing networks. Application examples of this kind of networks include online
communities such as Kazaa and those dedicated to music distribution on the
Web. The MUTE protocol intends to provide reliable communication for the
agents involved in the network (so-called peers), working as a tool to commu-
nicate requests of keywords through the network, so that an specific file can be
found and then received [?]. This protocol is composed of two main phases:
searching and routing parts. We will focus directly in its searching phase, due
to its significance in terms of security: if the information of the search (which
agent is requesting, and who has the correct information) is safeguarded, then
the routing phase will guarantee that only the correct principals will know the
information. Next we present a formalization of MUTE, followed by a proof of
secrecy over shared keys along the protocol run.

Abstracting P2P systems Let us give some definitions for P2P systems.
They will serve to abstract common behaviors and objects in such systems:

Definition 1 (Sets in Mute). Let Files be the set of all the files in the P2P
network and Files(A) the set of files belonging to peer A. Let Keywords be
the set of keywords associated to the files Files, Keywords(A) the keywords
associated to the peer A and Keys the relation Files : Keywords, representing
the keywords associated to a particular file. Let Headers be the set of headers
of files, which is associated to Files, Headers(A) the set directly related to
Files(A), such that each header which belongs to Headers(A) will be associated
to a unique file belonging to Files(A).

The following definition will provide a formal basis to define and reason
about P2P networks:

Definition 2 (P2P Network model). We shall describe a P2P network as an
undirected graph G whose nodes represent the peers and whose edges mean the
direct connections among them. We use Peers(G) to denote the set of all the
nodes in G. Given a node X ∈ Peers(G), Let ngb(X) be the set of immediate
neighbors of X.

For example, consider a P2P network G with A,B ∈ Peers(G). Suppose
that A initiates the protocol by broadcasting a request to all of its neighbors
in order to find a particular answer, and B is the agent which has the desired
answer that A is searching for, deciding to send a response. In this case, B can
be any node inside the network with the desired file on its store. A requests
for a particular file it wishes to download, sending the request to the network

26 Arbeláez et al.

Init(A) ≡ (‖B ∈ngb(A) outnew(n) ({|n,Kw |}Key(A,B),A,B).
(‖Y ∈ngb(A) in ({|n, res,m |}Key(Y ,A),Y ,A))

Interm(A) ≡ !(‖Y ∈ngb(A) in ({|M |}Key(Y ,A),Y ,A) .
‖B ∈ngb(A)−{Y } o({|M |}Key(A,B), A,B))

Resp(A) ≡ ‖Y ∈ngb(A) , kw∈Keys(Files(A)) in ({| x ,Kw |}Key(Y ,A),Y ,A) .
(‖B ∈ngb(A)outnew(m) ({| x , res,m |}Key(A,B),A,B))

Node(A) ≡ Init(A) ‖ Interm(A) ‖ Resp(A)
SecureMUTE ≡ ‖A∈Peers(G)Node(A)

Figure 4: MUTE specification on SPL

by broadcasting it to its neighbors. This request includes a keyword kw ∈
Keywords, which will match the desired file, and a nonce N which will act as
the request identifier. Along the searching path an unknown amount of peers
will forward the request until B is reached, the peer with the correct file such
that ∃f ∈ Files(B) and kw ∈ Keys(f). Then, B sends its response by means
of the header of the file RES, among with the identifier N and a new name M
generated by it to recognize the message as an answer. This is done again by
broadcasting the message through a series of forward steps, until reaching the
actual sender A.

The following specification shows how a protocol for P2P systems can be
constructed. Considering only the searching protocol of MUTE, the phases
considered are the ones that involve the transmission of the keyword, the re-
sponse message and the keys (leaving aside the phases of connection), and the
sub-messages that include plaintext. We assume that the symmetric keys are
equivalent (i.e., key(A,B) = key(B,A)). A formal model of this scenario is
presented in Figure ??2.

Some intuitions behind the model follow. It is assumed that the topology
of the net has already been established. The agent starts searching for an own
keyword. Then this agent broadcasts the desired keyword to all of its neighbors.
They receive the message and check whether the keyword matches one of their
files. When at least one of the neighbors find the requested keyword, it will
broadcast a response message, in such a way that eventually the one searching
for the keyword will get it and understand it as an answer to its request. The
message will be forwarded by all the agents until it reaches its destination. In
the case that the keyword does not match any file of the agent, it will broadcast
it to its neighbors asking them for the same keyword. The choice of having or
not the right file is modeled in a non-deterministic way. Notice that the model
abstracts away from performance issues such as, e.g., the search for the best
path, concentrating the analysis only in the satisfaction of a secrecy property.

2Notation (‖i∈I Pi).R, representing the execution of process R once parallel composition
‖i∈I Pi is fully executed, can be easily encoded using elements in the language. See [?] for
more details.

Process Calculi to Analyze Emerging Applications in Concurrency 27

Verifying a Typical Security Property: Secrecy Considering the guide-
lines stated before, the complete model must consider the spy presented in Table
??. The final model could be seen as

MUTE ≡ SecureMUTE‖!(‖i∈{1...8} Spyi) (1)

To analyze secrecy of a given protocol in SPL, one considers arbitrary runs
of the protocol.

Definition 3 (Run of a Protocol). A run of a process p = p0 is a sequence

〈p0, s0, t0〉
e1−→ · · · ew−→ 〈pw, sw, tw〉

ew+1−→ . . .

Analyzing the specification, the set of events can be made explicit.

Events in MUTE Each role in the specification generates different roles
according to the action they execute. The complete model must consider all
the rules for a complete proof, as described in the following definition:

Definition 4 (Events in MUTE). The event ew is an event in the set

Ev(MUTE) = Init : Ev(pInit)∪ Interm : Ev(pInterm)∪Resp : Ev(pResp)∪Spy : Ev(pSpy)

We now proceed to explain the events.

• Initiator Events: The initiator events indicate the behavior of process
Init(A). This process can be splitted in two main sub-processes: an out-
put process that generates a new name n and a request message ({|n, kw |}Key(A,B), A,B)
over the store, and an input process that receives the answer message
({|n, res,m |}Key(A,B), A,B) via an input action in ({|n, res,m |}Key(A,B),A,B).
Figures ?? and ?? describe these sub-processes.

(a)
Ini-
tia-
tor
Out-
put
ac-
tion

(b)
Ini-
tia-
tor
In-
put
ac-
tion

Figure 5: Initiator Events

• Intermediator Events: Each agent acting as an intermediator has to for-
ward the received messages. Figure ?? illustrates the event in which the
intermediator process receives the message ({|M |}Key(Y,A), Y, A) via an
input action in ({|M |}Key(Y ,A),Y ,A). The composition of a second sub-
process (Figure ??) completes the intermeditator behavior, forwarding
the received messages M to one of the neighbors by means of an output
o({|M |}Key(A,B), A,B).

28 Arbeláez et al.

(a)
In-
put
ac-
tion

(b)
Out-
put
ac-
tion

Figure 6: Intermediator Events

• Responder Events: A responder agent is basically composed by two pro-
cesses: an initial input (Figure ??) that waits for a message request
({|n, kw |}Key(Y,A), Y, A), and a subsequent output of the answer ({|n, res,m |}Key(A,B), A,B)
via an output action o({|n, res,m |}Key(A,B), A,B), with a new name m
(Figure ??).

(a)
In-
put
ac-
tion

(b)
Out-
put
ac-
tion

Figure 7: Responder Events

The property: secrecy over shared keys The secrecy theorem for the
MUTE protocol concerns the shared keys of neighbors. If they are not corrupted
from the start and the peers behave as the protocol states then the keys will
not be leaked during a protocol run. If we assume that the shared keys are
not contained in the initial output conditions (key(X,Y) 6v t0, where X,Y ∈
Peers), then at the initial state of the run there is no danger of corruption.

Theorem 1. Given a run of MUTE 〈MUTE, s0, t0〉
e1−→ · · · ev−→ 〈pv, sv, tv〉

ev+1−→
. . . and A0, B0 ∈ Peers(G), if key(A0, B0) 6v t0 then for each w ≥ 0 in the run
key(A0, B0) 6v tw

Proof. Suppose there is a run of MUTE in which key(A0, B0) appears on a
message sent over the network. This means, since key(A0, B0) 6v t0, that there
is a stage w > 0 in the run such that

key(A0, B0) 6v tw−1 and key(A0, B0) v tw.

Where ew ∈ Ev(MUTE) (Definition ??). By the evolution of nets with
persistent conditions (SPL-nets token game), we can infer that key(A0, B0) v
eow. As can be easily checked by using the events defined before, the shape of
every Init or Interm or Resp event

e ∈ Init : Ev(pInit) ∪ Interm : Ev(pInterm) ∪ Resp : Ev(pResp)

does not fulfill that. key(A0, B0) v eo, so the event ew can therefore only be
a spy event. If ew ∈ Spy : Ev(pSpy), however by using the proof principle of

Process Calculi to Analyze Emerging Applications in Concurrency 29

control precedence and the token game for SPL-nets, there must be an earlier
stage u in the run, u < w such that key(A0, B0) v tu which clearly is a
contradiction.

This small but illustrative example has served as a basis for the study of
more complex properties, such as considering the secrecy threats involved with
outsider attackers in the protocol [?]. This approach using process calculi has
allowed us to expand our analyzes, considering new, more powerful models of
attackers. These attackers are capable to infiltrate inside the P2P network
with greater knowledge about the requests, answers and keys involved. Also,
our approach has allowed us to find security attacks within these models, and
to propose new designs that correct the protocol, guaranteeing a full secrecy
property [?].

In the same sense, other classes of P2P protocols have been studied. For
instance, protocols for collaborative P2P applications (such as Microsoft Mes-
senger [?, ?] and collaborative searches [?]) aim to allow application-level col-
laboration between users. There exist high security risks in these applications:
the transmission of private data through the network is an important issue so
that attackers will not access that kind of secrets. We have demonstrated the
applicability of the process calculi approach in the modeling and verification of
collaborative P2P applications, extending the language to consider attackers in
dynamic reconfiguration systems [?].

4 Concluding Remarks

In this paper we have introduced basic ideas underlying process calculi, a set
of formalisms aimed to describe and analyze essential properties of concurrent
systems. The design of a process calculus respects a series of basic principles
(abstraction, compositionality and economy) and intends to constitute a rigor-
ous framework for the study of a particular phenomenon. An introduction to
the most relevant issues and components of a process calculus was also given.

Although process calculi were originally devised for the study of distributed
and mobile computing systems, a recent research trend consists in using them
for analyzing systems and phenomena in emerging applications in the arts, the
sciences and the engineering. The generic nature of process calculi and their
associated techniques are some of the reasons that have motivated such a trend.

Based on previous works by the authors, the paper focused on two of such
emerging applications, namely systems biology and computer security. Two
different calculi (ntcc and SPL) were presented in order to illustrate some
examples of systems in each application area. The particular motivations and
underlying ideas of these calculi were discussed and explained. Some proper-
ties of the modeled applications were verified using the reasoning techniques
associated to each calculus. Since the modeled applications correspond to real
systems, the presented proofs enjoy a great deal of significance.

It is important to remark that process calculi verification can complement
usual methods for system design and construction. In systems biology, for in-

30 Arbeláez et al.

stance, process calculi can contribute to study the behavior of systems that are
difficult to analyze using conventional experimentation. Some important steps
in this direction have been taken; nevertheless, both theoretical and practical
research efforts are needed to build more effective tools for biologists and related
experts. As for security, the increasing flexibility of communication networks
certainly poses new challenges for the design of protocols that ensure relevant
security properties. One approach that seems particularly promising is the one
that seeks the translation of protocol descriptions as some kind of logic formu-
las. As a consequence, further efforts are required in order to automatically
verify more sophisticated properties. Representing more powerful and smarter
attackers is also an interesting challenge to undertake.

Another challenge pertains to the development of software tools. This is
particularly urgent as process calculi are trying to constitute an alternative
for property verification in domains where experts usually know little (or even
know nothing at all) about Computer Science formalisms. Therefore, tools to be
designed must involve intuitive notations and user interfaces as well as efficient
simulation capabilities. Some reported initial efforts in this practical direction
are the tools for biological simulation proposed in [?] and χ-Spaces [?, ?], a
framework for the development of protocols that is close to SPL.

Acknowledgement

Research reported in this work was supported by the Pontificia Universidad
Javeriana-Cali under the project “Modelamiento de Problemas de Ciencia y
Tecnoloǵıa usando Cálculos de Procesos Concurrentes (Fase II)”. This work was
carried out while authors Gutiérrez, López and Pérez were research assistants
at the AVISPA Research Group of the Pontificia Universidad Javeriana, Cali.

