Chain of events:
Modular Process Models for the Law

Sgren Debois', Hugo A. Lépez?#, Tijs Slaats?, Amine Abbad Andaloussi®, and
Thomas T. Hildebrandt?*

! Department of Computer Science, IT University of Copenhagen, Denmark
debois@itu.dk
2 Department of Computer Science, Copenhagen University, Denmark
{lopez,slaats,hilde}@di.ku.dk
3 Technical University of Denmark, Kgs. Lyngby, Denmark
amab@dtu.dk
* DCR Solutions A/S, Denmark

Abstract. In this paper, we take technical and practical steps towards
the modularisation of compliant-by-design executable declarative process
models. First, we demonstrate by example how the specific language of
timed DCR graphs is capable of modelling complex legislation, with ex-
amples from laws regulating the functioning of local governments in Den-
mark. We then identify examples of law paragraphs that are beyond these
modelling capabilities. This incompatibility arises from subtle and—from
a computer science perspective—non-standard interactions between dis-
tinct paragraphs of the law, which must then become similar interactions
between model fragments. To encompass these situations, we propose a
notion of metworks of processes, where the processes are allowed to in-
teract and regulate their interaction through the novel mechanisms of
exclusion and linking. Networks are parametric in the underlying process
formalism, allowing interactions between processes specified in arbitrary
and possibly distinct trace-language semantics formalisms as the indi-
vidual models. Technically, we provide a sufficient condition for a good
class of network compositions to realise refinement of the constituent
processes. Finally, parts of the theoretical framework (networks and ex-
clusion) have been implemented by our industry partners, and we report
on a preliminary evaluation suggesting that inter-model synchronisation
is indeed both necessary and helpful in practical modelling scenarios.

Keywords: law, compliance by design, process modelling, refinement

1 Introduction

Casework is often governed by law, e.g, in municipal governments or in the
finance sector. In these settings, adherence to the law—Ilegal compliance—is an

* Work supported by the Innovation Fund Denmark project EcoKnow (7050-00034A), the Danish
Council for Independent Research project Hybrid Business Process Management Technologies
(DFF-6111-00337), and the European Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement BehAPI No.778233.

essential part of “correctness”. However, in systems supporting casework, the law
is rarely a first-class object, and guarantees of compliance are hard to come by.

This problem is compounded by the practical difficulty that compliance is a
property of a collection of IT system. A modern European municipal government
of even a medium-sized city will have a system landscape rivalling enterprises
in complexity and heterogeneity: Disparate systems acquired and updated at
disparate schedules over decades. To reason formally about compliance in such
a setting, it is not enough to know that any single system is in compliance, we
must know that the composite overall system is in compliance.

The law itself is also a collection of interacting entities; typically paragraphs
or sections. Research into formalisation of law has established as paramount the
need for a trustworthy and understandable correspondence between the con-
structs in the formal notation on the one hand, and the natural language texts
that express the rules in the original legal sources on the other [6,/14]. Such a
correspondence is necessary to ensure that guarantees provided by the formal
language will, quite literally, “hold up in court”; but also to allow for updating
models when the law inevitably changes. The quest for such correspondences
have given rise to the isomorphism principle [5/6] (see also discussion in [7]) that
formal models of the law must be in one-one correspondence with the structure
of that law—e.g., that each paragraph in a law text corresponds uniquely to a
model fragment in the formal specification.

This paper studies models for the law with the aim of directly constructing
declarative, executable workflow specifications from it. E.g., when the law states
that “the parents must consent to a government interview with their child”,
the executable workflow specification must have activities “consent” and “in-
terview”, and we must be able to prove that in the model, the latter is always
preceded by the former. We specifically consider the Danish Consolidation Act
on Social Services [1], which regulates in minute detail the operations of Danish
Municipalities. We formalise fragments of this law in the Timed Dynamic Condi-
tion Response graphs (DCR graphs) declarative modelling language [111|18}[20],
as they are already actively being used to to create executable models of law to
for public digital case management systems [25].

We find that while individual paragraphs of the law are straightforward to
model, interactions between paragraphs are difficult or impossible to model if
one is to take the isomorphism principle seriously. To address this shortcoming,
we propose the meta-formalism of “Networks” for expressing such interactions
via the novel constructs of linking and exclusion. These constructs allow (a)
one-to-many interactions between constraints in the underlying processes and
(b) selectively disregarding such constraints in interactions.

The meta-formalism of Networks is independent of the exact formalisms used
to specify individual process/paragraphs, i.e., it is a hybrid process notation |31].
It is only required that each component notation has a labelled transition sys-
tem semantics. Thus, it is technically possible for a network to combine pro-
cesses/paragraphs formalised in disparate notations, e.g., some as DCR, some
as DECLARE |[3,30], some as finite automata, and some as BPMN [29].

As a key technical result, we give a sufficient condition for Networks to give
rise to refinement in the sense of |11}/34]. This theorem has been verified in
Isabelle/HOL; the formalisation is available online [32]. Definitions, Lemmas,
and Theorems etc. in this paper that have been so verified are marked out with
a filled-in, like the one at the end of this paragraph: |

Moreover, parts of the theoretical framework (networks and exclusion) have
been implemented by our industry partners, and we report on interviews with
practitioners who find the notions of inter-model synchronisation indeed both
necessary and helpful in practical modelling scenarios.

In summary, we make the following contributions.

1. We demonstrate the use of timed DCR graphs to model excerpts of a real law,
showing examples of both sections that can be modelled straightforwardly
and those that require interaction.

2. We define a notion of Networks with novel concepts of “exclusion” and “link-
ing” tailored to the complex and unusual requirements that modelling the
law under the isomorphism principle poses on compositionality.

3. We show how this notion of compositionality formally gives a syntactic means
of achieving refinement in the sense introduced in [11] of models expressed
in possibly distinct formalisms.

4. We report on a preliminary qualitative evaluation of an implementation of
DCR networks with exclusion as part of the a process engine used to digitalise
administrative processes in municipal governments.

Altogether, the present paper takes significant steps, both technical and practi-
cal, towards achieving compliant-by-design executable declarative process mod-
els of government workflows.

Related Work. We share motivation with the study of Compliant-by-Design
business processes [15]. Here, formal languages expressing laws and regulations
is an active line of research, and a variety of approaches exist, e.g., logics [15-
17], Petri Nets [24], and declarative process languages [10]. We are unaware of
Compliance-by-Design work that include references as language primitives.

The relationship between natural language specifications and (declarative)
business processes has been recently studied in the BPM community with works
for Declare [2], deontic logics [12] and DCR graphs [26]. While these works ap-
ply NLP techniques to identify rules between process activities, they do not
consider the inter-dependencies between rules. The exception is [35], that iden-
tifies subsumption, redundancy and conflict between rules. The present work
takes a different tack, by providing a mechanism to modularise rules.

An approach similar to linking has been proposed for Petri Net variants
in |13}/22}123]. Here process fragments, modelled as Petri nets, are loosely cou-
pled through event and data dependencies. Our approach is different in that we
employ a declarative process language (DCR graphs), we link event executions
instead of data, and fragment composition is based on multicast synchronisa-
tion. Finally, several works in logic programming have studied modularity and

composition (see [8] for an overview). Networks and links resemble union and
overriding union operators in modular logic programs.

2 Timed Dynamic Condition Response Graphs

We briefly recall Timed DCR graphs as introduced in [20]. Informally, a DCR
graph comprises a set of events F, a marking assigning state to each event,
and a set of inter-event relations. Together, the two determine (a) whether a
given event is enabled for execution, (b) how such execution would update the
marking; and (c) what events are required to happen within what deadlines.

Time is advanced in discrete steps called “ticks”, and time spans are measured
in integral numbers of such ticks. Deadlines in a timed DCR graph is measured in
how many ticks may elapse before some event must happen; when that number
is 0, time cannot advance any further without either executing the event or
violating the semantics of the DCR graph.

Intuitively, the marking indicates for each event e when (if ever) it was last ex-
ecuted; when (if ever) it must eventually be executed or excluded—its deadline—;
and whether the event is currently included or excluded. Excluded events cannot
be executed, and are disregarded as obstacles to other events executing.

Similarly, the relations govern enabledness and marking update: A timed
condition (e,k,e’) € —e means that event e’ can only execute if event e is
excluded or it was previously executed and that the last execution was at least
k time units ago. A timed response (e, k,e’) € &= means that whenever event e
executes, it imposes the requirement on €’ to either become and stay excluded,
or to execute within at most &k time units. A milestone (e, e’) € —¢ means that
event ¢’ can only execute if event e is not currently required to be executed or
excluded. An ezclusion (resp. inclusion) relation (e, f) € =% resp. (e, f) € =+
toggles the inclusion state of f to false resp. true whenever e is executed.

All in all, the meaning of a DCR graph is the set of sequences of event
executions and time increments it is willing to allow.

We give a brief formal account of timed DCR, graphs below; however, the
reader who either knows DCR graphs already, or is satisfied to learn by example
is invited to skip ahead to the next Section.

Notation Let w be the set of finite natural numbers and zero. Let co be the
set w U {w}, where we refer to w as infinity. We write X — Y for a partial
function from X to Y. When f : X — Y is a (possibly partial) function, we
write flxz — y| for the function f' : X — Y identical to f except f'(z) = y.
Finally, for a binary relation R, take e R = {f|(e, f) € R} and vice versa.

Definition 1. A timed DCR Graph G is given by a tuple (E, M, —e, e— —o
, =+, =%, L,1) where

1. E is a finite set of events
2. M € (F—w) X (E—o00)x P(E) is the timed marking
3. e C F xw X FE, is the timed condition relation

4. = C E x 00 X E, is the timed response relation

5. =0, =+, =% C E x E are the milestone, include and exclude relations

6. L is the set of labels

7. 1: E — L is a labelling function, which assigns to each event e a label I(e).

We write the components of a marking M as M = (teg,tre, In). The minimal
included response deadline minrg is defined by minrg = min{t,.(e) | tre(e) €
wAe€In}.

The marking defines for each event e an integer k = t.,(r) indicating how long
ago it was executed or L = t.,(r) if not; a deadline ¢,.(r) for the event to be
executed or |; and a boolean In indicating whether the event is “included”.

Definition 2. Let G be a timed DCR graph. We say that the event e is enabled,
writing enabled(M, e) iff

1. e€ln
2. Ve €In. (e, k,e) € ve = to(e) £ LAk <te(e)
3. Ve eIn.e —woe = tr(e)=1

We say that the time-step n is enabled, writing enabled(M, n) when minrg > n.

That is, for e to be enabled, (1) it must be included; (2) whenever it is conditional
upon an included event e’ with delay k, then this ¢/ was executed at least k time
steps ago; and (3) every included milestone €’ for e is not pending. A time-step
n is enabled iff no included event has a deadline closer than n time units.

Definition 3. Let G be a timed DCR graph. The effect of executing an enabled
event € in M = (teg, tre, In) is a new marking given by:

effect (M, €) = (tex[e 0], .., In\ (e %) U (e —+))
wheret] (f) = min{k | (e,k, f) € =} when (e, k, f) € e— and t, . (f) = tyc[e —
0](f) otherwise. Similarly, the result of advancing time by n time-units is the
new marking given by:

effectg(M,n) = ((+n) 0 teg, (—n) 0 tye, In)

where (+n) respectively (—n) denote the function w), — w, which preserve L
and otherwise takes k to k + n respectively max(k — n,0).

That is, executing e updates the marking by (i) setting the last-executed
time te.(€) of e to 0 (now); (i) clearing any existing deadline of e, then setting
new deadlines for events with responses from e; and (iii) making not-included all
events excluded by e, then making included all events included by e. Similarly,
when the time-step n is enabled, we “advance time” by adding n to all executed
time-stamps, and subtracting n from all deadlines. (An equivalent variation of
this semantics make Timed DCR Graphs finite, see [20] for details.)

Definition 4 (Labelled transition system). An event or time step « € EUN
has a transition M = M’ iff enabled(M, o) and effectq(M, o) = M'. A run of
a graph G is a finite or infinite sequence of transitions

Go 24 Gy 22 Gy 23

We write runs(G) for the set of all possible runs for a graph G. An accepting
run is a run such that for all i < k and all e € E, if t' (e) € w and e € In’,
then there exists j > i s.t. either e € In’ or a; = e Finally, a trace is a finite or
infinite sequence A\ As ... of labels and natural numbers, such that there exists
and accepting run Gy — Gy =2 --- where \; = lag) or \i=a; =n €N

Note that in this definition, a trace is a run where events have been replaced
with their labels, but time advances (natural numbers) have been left in. The
indirection of labels is a source of expressive power; see [11] for details.

We write DCR graphs as [M] R, where M is the marking and R is a list of
relations separated by vertical bars. E.g.:

[A:(7,t,1),B: (L,t,3)]A B |Ae"B

Here, the marking A : (7,t, L) that A was executed 7 time-steps ago, it is cur-
rently included (t), and there is no deadline for it (_L). Conversely, in B : (L, t, 3),
we see that B was not executed, but does have a deadline of 3. Formally, the
marking A : (7,t, L) should be read as t.,(A) = 7, A € Inis true, and t,.(A) = L.

While |20] did not allow multiple distinct deadlines between the same two
events, the present notion of DCR graphs relaxes this limitation by preferring
the minimum of multiple deadlines. This is to ensure that the above calculus-
like notation is always well-defined, i.e., that one can freely write terms such as

AoiB|Ao£B.

3 Models of law

We now provide examples of modelling law fragments as DCR graphs. We shall
see how DCR graphs neatly model individual sections of a real-world law. In
Section [we re-use these models when considering references between sections.

As a real-world example, we shall consider fragments of the Danish Con-
solidation Act for Social Services |33] (CASS). Municipalities in Denmark have
processed an average of 9.337,33 CASS cases in the last 3 years. Revising the
outcome of these cases is standard procedure: In the first semester of 2018, 887
cases (9,5% of the total cases) were revised, and the outcome of 483 cases (5,1%
of the total cases) was changed [27}28].

3.1 A condition: CASS §63(1)

This paragraph describes the situations in which a municipal government must
intervene to provide medical attention for a child:

CASS §63(1): “If the custodial parent fails to have a child or young person
examined or treated for a life-threatening disease or a disease involving the risk
of substantial and permanent impairment of function, the children and young
persons committee may decide to undertake such examination or treatment.”

To model this paragraph as a DCR graph, or in any event-based formalism,
we have to understand from this description what are the events of the graph.
The custodial parent “fail[ing] to have a child or young person examined or
treated” is not an event happening at a particular moment in time but rather
a continuous state of affairs. The key to modelling this situation is to recognise
that the event is not the failure itself, but rather the formal recognition by the
municipal government that this failure is indeed happening. That decision is an
event: It happens at a specific moment in time where a document declaring such
recognition is signed.

With that in mind, we find in 63(1) the events (that the municipal gov-
ernment formally recognises) a “failure to undertake examination or treatment”
and “compulsory examination or treatment”. How are these events related? The
phrasing of the paragraph indicates that only if there is such failure may the
government step in: in process terms, the failure is a condition for the compul-
sory examination or treatment. On the other hand, the phrasing does not require
the government to act. Altogether, we arrive at the following DCR, graph:

def (. .
Pss1) = [failuregg1y : (L, t, L), examggy = (L, t, L)] failuregs(q) exames(1)

In this graph, both events are marked as not executed (L), included (t) and
not pending (). The graph has a single condition constraint failuregs()
examgy (1), indicating that the event examgs(1) can execute only if failuregs(q) has
previously executed. In this section, we shall not distinguish between an event
and its label, formally taking /(failuregs(1y) = failuregs(1) and £(examgs()) =
eXamﬁg(l).

Here, subscripts such as “63(1)” are simply part of the events name and do
not have any special significance. They will become helpful in the next section,
when we need to distinguish between near-identical events in distinct paragraph-
s/graphs.

Considering the possible runs of FPg3(1), we find among others the following:

”

(failure63(1), exam63(1)> 1)

On the other hand the singleton examgs(1) is not a run: The condition prohibits
execution examgg(1) without first executing failuregs(y).

3.2 Static obligations & inclusion state: CASS §50(3)

This paragraph describes how, during a so-called Child Protection Examination
(CPE), the child being considered for protection must in fact be heard.

CASS §50(3): “The examination shall include a consultation with the child or
young person. The consultation may be dispensed with if factors such as the

maturity of the child or young person or the nature of the case strongly suggests
that the decision should be made without prior consultation. If the consultation
cannot be conducted, steps shall be taken to establish the views of the child or
young person. [...]”

Again we identify events: a “consultation with the child or young person”
(consultsg(sy); the declaration that “the consultation may be dispensed with”
(omits0(s)); and the (formal documentation of) “the views of the young person
or child”, established by some other means than consultation (viewssqs)).

The text describes a usual course of action of consulting the child, and an
alternative for special cases (marked as “steps shall be taken”). These situations
are usually modelled with an event indicating the declaration of special circum-
stances, which then excludes the common case and includes the special case:

def . .
Pso3) :e[consu|t50(3) (L t,w), omitsgsy 1 (L, t, L), viewssges) @ (L, f,w)]

omit50(3) —% C0n5U|t50(3) | omit50(3) —+ views50(3)

In Psg(s), the marking (line 1) says that consultsgs) and viewsss) are initially
required to happen eventually (w). Event viewsso) is initially not included.
While not included it cannot be executed, so the requirement to eventually
happen in the marking does not count. The relations (line 2) say that if event
omitsg(3) happens, then (left) consultsys) is excluded and (right) viewssgs) is
included, reversing that state of affairs: While both still technically pending,
it is now consultsg3) which is not included and considered irrelevant, whereas
viewssq(s) is included and relevant, and thus required to eventually happen.

3.3 Time & obligations: CASS §50(7)

Part of the requirements for the CPE process described in CASS §50 describes
how quickly the municipal government should react to reports (typically from
medical staff or school staff) that a child may be in need of special support:

CASS §50(7): “The examination must be completed within four (4) months
after the municipal council has become aware that a child or young person may
be in need of special support. Where, exceptionally, an examination cannot be
completed within 4 months, the municipal council shall prepare a provisional
assessment and complete the examination as soon as possible thereafter.”

We find three events in this text: “the municipal council has become aware that
a child or young person may be in need of special support” (reports 7)), the
completion of the examination (line 1, compl50(7)), and the preparation of a
provisional assessment (line 4-5, Provso(r))-

We model this paragraph as a graph with relations enforcing the obligation
to either complete the examination, or produce a provisional assessment within

4 months from report’s reception.

def
P50(7) = [report50(7) : (J_,t, J_)7C0mp|50(7) : (J_,t, J_)7 prov50(7) : (J_,t, L)}
reportsg7) o compl50(7) | reportsg7) Provsg(7)
4m)
| reportsg(zy @ Provsg(zy | complsgzy —% provsgq)

That is, if a report is received (reports ;) is executed), the examination must
eventually (w) be concluded. To model the special case of provisional assess-
ments, we combine deadlines and exclusion: we require that a provisional as-
sessment (prov50(7)) is produced within 4 months after receiving the report, but
remove that requirement using an exclusion once the actual examination com-

pletes (complsg (7).

4 Modelling references

We now take legal texts whose specifications introduce referential information.

CASS §48(1): “Before the municipal council makes a decision under sections
51, 52, 52a, 56, 57a, 57b, 58, 62 and 63, section 65(2) and (3) and sections 68—
71 and 75, the child or young person must be consulted on these matters. The
consultation may be dispensed with if the child or young person was consulted
immediately beforehand in connection with the performance of a child protec-
tion examination, cf. section 50 below. [...]”

The article continues by describing the circumstances for a consultation to
be omitted, under which a guardian must be present etc. We will ignore these
details for brevity, and focus on the formal relations between paragraph instead.

There are several such references. First, §48(1) requires a consultation be-
fore “making a decision” under a range of other paragraphs, including §63 (see
sec. [3.1)). Recall that §63(1) tasked the municipal government with undertaking
medical examination or treatment for young persons if their custodian failed to
do so. For §63, the “decision” referred to in §48(1) refers to the municipal gov-
ernment deciding to (unilaterally) undertake such exams or treatments, that is,
executing the event examgs(q).

Second, §48(1) explicitly states that if a child consultation was made under
850, the consultation otherwise required by §48(1) is not necessary. According
to domain specialists, in the situation where both §48 and §50 takes effect, the
various consultations required are all considered “the same”.

These two kinds of references begets the question: How do we model such
references in DCR graphs? We shall see in this section that the latter kind can be
considered simply a renaming (since the activities are literally considered “the
same”); however, the former kind requires special treatment.

For starters, let us ignore exactly how §48 will be connected to other para-
graphs and make a straightforward model of the requirement that before making
(certain) decisions about a child, that child must be consulted. In this case, it
is straightforward to identify in §48(1) the events “make a decision” (decide,g(1))

10

and “consult the child” (consultsg(1)). Notice how consultygs(q) is not the same as
the consultsg(3y in Psg(3)—this is where the subscripts become helpful. In this
case, the model simply contains a condition, stipulating the requirement that
the consultation must come before the decision:
Pyg1) o
[consultyg(ry : (L,t, L), decidesg(1y : (L, t, L)]consultygq) decidesg1) (2)

It is tempting to think that we can model this reference by simply identifying the
event decideyg(1) in Pyg(1) with event examgs(q) in Pgs3(1). However, this will not be
sufficient, as the decision in §48(1) must also be identified with other decisions
in the other paragraphs listed (51, 52, 52a and so forth). By transitivity, we
would identify them all, but that is non-sensical: the decision to remove a child
from the home in §58 is obviously not identical the decision to conduct a medical
examination in §63(1). Those two things are not at all the same.

However, if proceedings are underway for the same child for both of §58
and §63(1) simultaneously, then the consultation mentioned in §48(1) applies
for both of them. That means that there should be only one such consultation,
simultaneously catering to all the relevant proceedings.

Altogether, we find that we cannot identify all decisions mentioned in §48(1),
however, we must identify the consultations for those decisions in order to main-
tain a strict correspondence with the law; in order to uphold the isomorphism
principle [5/6]. In DCR terms, we have a set of events in distinct graphs (the
decisions), each of which is conditional on the same precondition, specified in a
distinct other graph. To capture this idea, we introduce networks.

4.1 Networks

Networks formalise a notion of “synchronising process models”. While we intend
to use them with DCR graphs as the underlying process model—and this is how
our industry partner is using them—they are intrinsically formalism agnostic:
Any formalism with trace-based semantics can be used as the basic processes,
and there is no requirement that all underlying processes are specified in the
same formalism.

We abstract the underlying formalism into the following notion of a process
notation. Assume a fixed universe U of actions.

Definition 5. A process notation A = (P, excluded, step) comprises a set P of
process models; a function excluded : P — 2, and a function alph : P — 2 and
a transition predicate step : P x U x P. We require that (P,l,Q) € step implies
both I € alph(P) and alph(P) = alph(Q), and if also (P,1,Q’) then Q = Q’, that
18, step is action-deterministic.

Intuitively, alph gives a finite bound on the actions a process may exhibit, and we
require this bound to be preserved by step-transitions. Similarly, excluded tells
us which actions are excluded in a given process; this set is allowed to change as
the process evolves.

11

R,S::= P process notation | Il - ,lh. R link
|R| S network parallel \ 0 unit

Bu=1] >4 (regular/limited) action

Fig. 1. Syntax of Networks

DCR graphs with injective labelling is a process notation; in this notation
“actions” are DCR trace labels.

Lemma 6. Take P to be the set of timed DCR graphs with labels in U and
injective labelling functions. Let excluded be the function which given a timed
DCR graph G with events E, marking M, and labelling | returns the set of labels
of events of E that are not in In, that is, excludedG = {l(e) | e € E \ In}.
Finally take (G,1,G') € step iff there exists some event e € E s.t. £(e) =1 and
G Z» G'. Then (P, excluded, step) is a process notation.

Note that because of the assumption that the labelling functions are injective, (1)
the step predicate is action deterministic, and (2) it is not possible have distinct
events e, f where £(e) = {(f) yet e € In but f & In. That is, if [€ excluded G,
then the graph G has exactly one event labelled [, and that event is excluded.

Network themselves are vaguely reminiscent of CSP [21], and are similar to
the notion of networks for DCR graphs of [19]. However, they differ radically
from both with the introduction of limited actions, exclusion, and links.

The key features of Networks is synchronisation on limited and unlimited
actions. Intuitively, an unlimited action is a “real” action, exhibited by an un-
derlying process. Conversely, a limited action indicates that while the network
does not wish to independently execute that action, it is willing to follow along
if someone else does. Limited actions allow a network to deny actions to other
networks, by refusing to engage in them.

We use this mechanism to formalise a notion of linking, where a single label
exhibited by one process is considered a required synchronisation partner for
multiple distinct actions in other processes, but will not independently exhibit
that action. This construct will be helpful in modelling paragraphs of the law
like §48(1), which imposes constraints on multiple other paragraphs.

Notation. Network actions are formed by tagging an underlying action [€ U
as either “limited” or “unlimited”. We write limited actions > and unlimited
ones simply [. For either, we define the function v to extract the underlying
process action, Y(I) = Y(pl) = I. For two network actions (1, 82 with the same
underlying action Y(81) = Y(B82) = | we define their combination >l Ul = >,
slUl=1,1Upl =1, and [LUl = [—that is, the unlimited action “wins”.

The syntax of Networks is defined in Figure[l] A network R is a collection of
possibly linked processes. We present the semantics Networks in Figure [3] The

12

0 ifN=0

alph(N) = alph(P) ?f N=P
{1, 1} U @Iph(MN{D) IE N =151y, ... 1. M
alph(N1) U alph(V2) if N=Ni | N2

actions(N) = alph(N) U {pz | = € alph(N)}

Fig. 2. Alphabet and labels of a DCR network

w [N-PROC] M [N-EXCL]
rLQ PP
B .
= <<
RS S ’Y(/J’L. I 1<ismn [N-LINK]
1ol RS U000, 0. S
B
R=S5 7(5)5 bl ln} [N-PASSTHRU]
oy, n. RS Ib 0,0, S
8 5’ — (g b
Ri =R 5 —BLS:Z v(B) =(8) [N-SYNC] 1> Ry 1(5) & alph(5) [N-PAR]
Ri||S1 —— Ra || S2 Ri||S—=Re| S

Fig. 3. Transition semantics of networks (symmetric rule for [N-PAR] is elided.)

definition uses the auxiliary notion of the alphabet of a network, the set of labels
it syntactically mentions, and its actions, which is just its alphabet lifted to both
unlimited and limited actions. We give these auxiliary definitions in Figure

We briefly explain the rules of Figure|3| In [N-PROC] we see that the network
which is just a single process in some notation exhibits the actions of that pro-
cess. In [N-EXCL] we see that this network also may exhibit a limited network
action for an otherwise excluded underlying process action. Then, a network
Iy, ,l,. R has two ways to fire a transition: In [N-LINK], we assume that
the underlying network R fires an action [. The linked network then fires, instead
of [, any of the actions ;. However, this linked action is limited, as indicated by
the triangle. In [N-PASSTHRU], we assume instead that the action I’ has nothing
in common with neither [nor the linked actions 1, ..., [,; in this case, the linked
network exhibits also the (unlimited) action I’. Finally, the synchronisation rule
for parallel composition of networks Ry || Rz is given in [N-SYNC] and [N-PAR]. In
[N-SYNC], we require either both sides to exhibit an action, and the underlying
process action of either to be the same. This allows a limited and unlimited ac-
tion to synchronise, with the composite process exhibiting the “least limited” of
the two actions. In [N-PAR], we allow the composite process to exhibit a network
action when either does, provided the underlying process action does not occur
syntactically in the other.

13

Definition 7 (Network LTS). A Network R defines an LTS where states are

networks, and there is a transition (R,l, R') whenever R LR A run of R is a

sequence
R=R 2Ry, 2 .. p, 24 Ry

A trace trace(r) of a run r is the sequence B, ..., Bk of actions of the run. The

language of the network R is defined as the set traces of those of its runs that

are everywhere unlimited (where no 8; =l for any 1), that is,

lang(R) = {trace(r) | r is an unlimited run of R} .

Note that we do not accept limited actions in traces: limited actions cannot
happen independently, but require a corroborating un-limited action.

4.2 Modelling with Networks

Using Networks underpinned by timed DCR graphs, we can return to the ques-
tion how to model inter-paragraph references using the models in Section 3] Note
the subtle difference that in that Section [3| we were considering runs, whereas
now we are considering traces. The difference is imperceptible since the models
of Sectionall had every event labelled by itself, that is £(e) = e. For this reason,
we allow ourselves in this section to treat “labels” and “events” interchangeably,
and we will speak only of events.

For modelling §48(1), we simply link the decidesg() event with the relevant
events from other paragraphs:

def .
R = P31y || decideyg(1) > examgs(1). Pyg1) (3)

This R does not admit the trace (failuregs(1), examgs(1)) even though we saw
in that Pgs3(1) does. In R, even if Pg3(1) allows the action examgs(y), for
the entirety of R to also allow that action, the right-hand side decidesg(1) >
examgs(1). Pyg(1) must synchronise via either the [N-SYNC] or [N-PAR] rule. Since
both sides of the parallel has examgs(1) in their alphabet, only [N-SYNC] applies.
This means that if the parallel were to have the action examgs(1), also the right-
hand side link would have either of the actions examgz(1) or bexamgs(1). Looking
at the link rules [N-LINK] and [N-PASSTHRU|, we see that the right-side can exhibit
examgg(q) iff Pyg(1) can exhibit examgs(1), but this is not possible because of the
condition from consultsys) to decidesg(qy in that graph, see .

On the other hand, the network R does have the trace

<f3i|ur963(1), ConSU|t48(1), exam63(1)> .

We mentioned briefly above §58 which under extreme circumstances allows
the government to remove a child from the home. Assuming a process Psg, with
the event removesg signifying the decision to undertake such removal. We can
then build the network where a child is both subject to proceedings §63 and §58.

def .
Ry = Pg3(1) || Pss || decideyg(1) > examgs(1), removess. Pyg(1) (4)

14

Again, this model would not admit any trace where examgs(1) or removess hap-
pened without a prior consultyg(;). It would admit various interleavings of the
863 and §58 proceedings and the §48(1) requirements.

The dependency on §50(3). Returning to §50(3), we recall that §48 allowed use
of a §50(3) consultation to replace its own, and that practitioners consider both
events “the same”. This has an obvious model: the one where we simply rename
events so that those two identical consultations are identical. This is represented
via the syntactical substitution for a free name, here written P{e/f}:

def
R3 = Pe31) || Pss || Psosy |l

decideys(1) > examgs(1), removess. (Pyg(1){consultso(s)/consultss1y}) (5)

It is irrelevant whether the renaming happens inside or outside the link construct.

5 A theory of links and refinement

We now relate the networks to the notion of refinement originally introduced
for DCR graphs [11] and later generalised to arbitrary process models with
trace semantics [34]. Under the right circumstances, networks provide a syntactic
mechanism for establishing refinements, thus providing a useful approximation
for what in DCR graphs is a computationally hard problem.

Notation Given a sequence s, we define the projection onto a set X as s|x as
simply the (possibly non-contiguous) sub-sequence of s for which each element
is in X. We lift this notion to sets of sequences pointwise.

Definition 8 (Network Refinement). Let R, S be DCR networks. We say
that R is a refinement of S iff lang(R)|aiph(s) C lang(S). |

To establish refinement, we confine the set of actions that may become limited.

Definition 9. Let N be a network and X C U a finite set of labels. We call X

unlimited for N iff for all 8 with v(8) € X and N LNy for some N' then (3 is
unlimited. X is globally unlimited for N if X is unlimited for every M reachable
from N. |

Lemma 10. Let P € P be a process, and let N be the network consisting exactly
of P. Then X is unlimited for N iff in every P’ reachable (under the process
notation step-relation) from P, x is not excluded for all x € X. |

We shall see in Lemma [[1] below how an unlimited set for a network ensures
the existence of an unlimited sub-trace on one side of a parallel composition of
networks. The proof relies on action-determinacy of networks, which in turn ne-
cessitates that requirement of Definition [5| We conjecture that this requirement
of action-determinacy is can be dispensed with at the cost of a somewhat more
complicated proof development.

15

Lemma 11. Let Ry, Sy be networks and let X C U be a set of labels. Suppose
that X is globally unlimited for Ry and that alph(Rg) Nalph(Sp) C X. Let r be a
run of Ry || So:

B B Br— B
Rol| So =5 Ry || S1 2 - 5 Ry || Sk = Ry || Sk (6)
Consider the sequence (B;, Rit1)1<i<k and take i1, ...,y to be the indices iden-

tifying a mazimal subsequence of this sequence such that 3;; € X. Then this
subsequence identifies a run r' of Ry:

Bi Bi Bi o
Ry=R; —5 Ry, =% ---R;, —— Ry (7)
Moreover, trace(r!) = trace(r)|actions(R,) - [|

Theorem 12. Let R be a network, assume that X is globally unlimited for R,
and that alph(R) Nalph(S) C X. Then R || S is a refinement of R.

Proof. We must prove that for any trace trace(r) € lang(R || S) we have also
trace(r)|aipn(r) € lang(R). By definition of language, every action in trace(r) is
unlimited, so trace(r)|siph(r) = trace(r)|actions(r)- But trace(r)|sctions(r) i a trace
of R by Lemmal|I1} and projection preserves unlimited-ness, hence we must have
trace(r)‘actions(R) € lang(R)' u

Corollary 13. Let P be a DCR Graph in which all events with a label in [, [are
included in all reachable markings. Let R be a Network with alph(R)Nalph(P) =
{l}Ul. Then the network P ||l > 1. R refines P.

What does Theorem [I2 and corollary [[3| mean for modelling? Looking at R
and R3 from egs. and , it is straightforward to prove using Theorem
that both Ry and R3 are in fact refinements of Fgg(1).

Corollary 14. Ry and R3 both refine Pg3(1)-

This confirms our intuition that (our model of) §48(1) does not in fact modify
863(1) beyond adding the requirement to have a consultation before deciding.

6 Implementation and Evaluation

A subset of networks with limited actions, exclusions and network composition
but not the link construct, has been implemented by DCR, Solutions A /S, a Dan-
ish vendor of adaptive case management systems, and used at Syddjurs Munici-
pality (a Danish Municipal government) to implement a administrative processes
compliant to CASS in DCR graphs. We report on a qualitative evaluation of
this subset. The objective of the evaluation is to (a) determine whether DCR
networks are relevant for practitioners; (b) estimate its usability as a modelling
construct; and (c¢) discover its limitations as perceived by practitioners.

16

The evaluation comprises a structured 2 hour interview with a Syddjurs Mu-
nicipality staff member (“the subject”) responsible for developing executable
DCR models supporting municipal casework and subsequent analysis of re-
sponses. The subject has 3 years experience modelling with DCR models, and
had used the DCR Network implementation for at least 2 months. The interview
was conducted on February 7th, 2020; interview script, answers, and analysis re-
sults are available on-line at [4].

We posed two sets of questions consecutively in a single session. With the
first set, we inquired into the background of the expert and the relevance of
the investigated approach (a). With the second set, we sought to compare law
digitalisation before and after the introduction of DCR networks (b), and to
examine the consequences of using the implementation (b,c). In the interview,
the subject reflected on his past and current experience with modelling the law.

We analysed a recording of the interview using a qualitative inductive ap-
proach supported by grounded theory [9]. With the support of qualitative data
analysis tool “Atlas.ti”, we applied initial coding to identify the pertinent as-
pects in the interview. We then used focused coding to gather the open-codes
into more abstract concepts based on their similarity traits. Finally, we used
axial coding to establish the relationships between the identified codes.

Outcome The relevance (a) of DCR networks was justified by a set of domain
requirements. The subject highlighted the presence of references in almost all
law text and the need to model the interaction between distinct law paragraphs.
When reflecting on past modelling experience, the subject mentioned the lack of
mechanisms to model communication between process models representing dis-
tinct law paragraphs. In practice, these mechanisms are needed to automatically
trigger related processes and model constraints between events in related mod-
els. In the absence of such mechanisms,case-workers must synchronise processes
manually, incurring overhead and in some cases leading them to bypass the case
management system altogether.

To investigate usability (b), the subject was guided to compare his past and
current modelling experiences. We note that this interview cannot distinguish
usability of the concept of DCR networks from usability of the tooling used by
the subject. The subject described areas where the proposed implementation
was helpful: the support to automate triggering of events, and for inter-model
constraints between them. According to the subject, these mechanisms facilitate
modelling the interplay between different processes, and also support process de-
composition, making it possible to divide extant models into smaller fragments,
each describing a specific law section.

With regards to limitations (c), the subject raised the lack of explicit mech-
anisms to visualise references between events of different processes, making it
difficult to track and maintain dependencies between different models. Moreover,
the subject felt limited by the absence of simulation tools for DCR networks.
Last but not least, he underlined the necessity to extend the existing approach
to support data flow between process models.

17
7 Conclusion

In this paper, we have taken technical and practical steps towards achieving
compliant-by-design executable process descriptions. We demonstrated the use
of timed DCR graphs to model excerpts of a real law, showing examples of
both sections that can be modelled straightforwardly and those that required
interaction between models. To that end we defined a notion of compositional
Networks with novel concepts of “exclusion” and “linking” tailored to modelling
the complex and unusual requirements that modelling the law under the iso-
morphism principle poses on compositionality. We then showed how this notion
of compositionality formally provides a syntactic means of achieving refinement
in the sense introduced in [11], here for models expressed in possibly distinct
formalisms. This development has been verified in Isabelle/HOL, with theories
available on-line [32]. Finally, we reported on a preliminary interview-based eval-
uation with practitioners, which confirms the necessity of treating references in
models. Altogether, we have taken both technical and a practical step towards
executable declarative process models of government workflows.

References

1. Bekendtggrelse af lov om social service (Aug 2017), Bgrne- og Socialministeriet

2. van der Aa, H., di Ciccio, C., Leopold, H., Reijers, H.A.: Extracting Declarative
Process Models From Natural Language. In: CAiSE. Springer Heidelberg (2019)

3. Aalst, W.M.P.v.d., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service
Flow Language. In: WSFM. pp. 1-23. LNCS (Sep 2006)

4. Andaloussi, A.A.: Evaluation of dcr networks: Interview recordings and full analysis
(Feb 2020), http://doi.org/10.5281/zenodo . 3724874

5. Bench-Capon, T.J.M.: Deep models, normative reasoning and legal expert systems.
pp. 37-45. New York, USA (1989)

6. Bench-Capon, T.J.M., Coenen, F.P.: Isomorphism and legal knowledge based sys-
tems. Artificial Intelligence and Law 1(1), 65-86 (Mar 1992)

7. Bench-Capon, T., Araszkiewicz, M., Ashley, K., Atkinson, K., Bex, F., Borges,
F., Bourcier, D., Bourgine, P., Conrad, J.G., Francesconi, E., Gordon, T.F., Gov-
ernatori, G., Leidner, J.L., Lewis, D.D., Loui, R.P., McCarty, L.T., Prakken, H.,
Schilder, F., Schweighofer, E., Thompson, P., Tyrrell, A., Verheij, B., Walton, D.N.,
Wyner, A.Z.: A history of Al and Law in 50 papers: 25 years of the international
conference on Al and Law. Art. Int. and Law 20(3), 215-319 (Sep 2012)

8. Bugliesi, M., Lamma, E., Mello, P.: Modularity in Logic Programming. The Journal
of Logic Programming 19-20, 443-502 (May 1994)

9. Charmaz, K.: Constructing Grounded Theory. Introducing Qualitative Methods
series, SAGE Publications (2014)

10. Chesani, F., Mello, P., Montali, M., Riguzzi, F., Sebastianis, M., Storari, S.:
Checking compliance of execution traces to business rules. In: BPM. pp. 134-145.
Springer (2008)

11. Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refinement & reachability:
complexity in dynamic condition-response graphs. Acta Informatica 55(6), 489-520
(Sep 2018)

http://doi.org/10.5281/zenodo.3724874

18

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Dragoni, M., Villata, S., Rizzi, W., Governatori, G.: Combining natural language
processing approaches for rule extraction from legal documents. In: AICOL. LNCS;
vol. 10791, pp. 287-300. Springer (2017)

Eberle, H., Unger, T., Leymann, F.: Process fragments. In: OTM Confederated
International Conferences. pp. 398—405. Springer (2009)

Gordon, T.F., Governatori, G., Rotolo, A.: Rules and norms: Requirements for rule
interchange languages in the legal domain. In: Rule Interchange and Applications.
pp. 282-296. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

Governatori, G., Sadiq, S.: The journey to business process compliance. IGI Global
(2009)

Governatori, G., Rotolo, A.: Norm Compliance in Business Process Modeling. In:
Semantic Web Rules. pp. 194-209. LNCS, Springer, Berlin, Heidelberg (Oct 2010)
Hashmi, M., Governatori, G., Wynn, M.T.: Normative requirements for business
process compliance. In: Australian Symposium on Service Research and Innovation.
pp. 100-116. Springer (2013)

Hildebrandt, T., Mukkamala, R.R.: Declarative Event-Based Workflow as Dis-
tributed Dynamic Condition Response Graphs. In: PLACES. EPTCS, vol. 69, pp.
59-73 (2010)

Hildebrandt, T.T., Mukkamala, R.R., Slaats, T.: Safe distribution of declarative
processes. In: SEFM 2011. LNCS, vol. 7041, pp. 237-252. Springer (2011)
Hildebrandt, T.T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-
organizational workflows as timed dynamic condition response graphs. J. Log. Al-
gebr. Program. 82(5-7), 164-185 (2013)

Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM
21(8), 666—-677 (1978)

Holfter, A., Haarmann, S., Pufahl, L., Weske, M.: Checking compliance in data-
driven case management. In: BPM Workshops. pp. 400-411. Springer, Cham (2019)
Kindler, E., Petrucci, L.: Towards a standard for modular petri nets: A formalisa-
tion. In: Petri Nets. pp. 43-62. Springer (2009)

Lohmann, N.: Compliance by design for artifact-centric business processes. Infor-
mation Systems 38(4), 606 — 618 (2013)

Lépez, H.A., Debois, S., Slaats, T., Hildebrandt, T.T.: Business process compliance
using reference models of law. In: Procs. of FASE. LNCS, Springer (2020), to appear
Lépez, H.A., Marquard, M., Muttenthaler, L., Strgmsted, R.: Assisted declarative
process creation from natural language descriptions. In: EDOC Workshops. pp.
96-99. IEEE (2019)

National Social Appeals Board (Ankestyrelsen): Annual report for the 2018 case
process. https://ast.dk/publikationer/arsopgorelse-2018 (May 2019)
National Social Appeals Board (Ankestyrelsen): Appeals Board decisions on the
Services Act in Q2 to Q4 2018 (...). https://bit.1ly/3glQOBK (May 2019)
Object Management Group BPMN Technical Committee: Business Process Model
and Notation, Version 2.0 (2013)

Pesic, M., Schonenberg, H., Aalst, W.M.P.v.d.: DECLARE: Full Support for
Loosely-Structured Processes. In: EDOC. pp. 287-287 (Oct 2007)

Slaats, T., Schunselaar, D.M.M., Maggi, F.M., Reijers, H.A.: The semantics of
hybrid process models. In: CooplS 2016. pp. 531-551

Sgren Debois: Formalisation: Modular Process Models for the Law. https://www.
itu.dk/people/debois/thys/ifm20 (Jun 2019)

The Danish Ministry of Social Affairs and the Interior: Consolidation
Act on Social Services (Sep 2015), http://english.sm.dk/media/14900/
consolidation-act-on-social-services.pdf, Executive Order no. 1053

https://ast.dk/publikationer/arsopgorelse-2018
https://bit.ly/3glQOBK
https://www.itu.dk/people/debois/thys/ifm20
https://www.itu.dk/people/debois/thys/ifm20
http://english.sm.dk/media/14900/consolidation-act-on-social-services.pdf
http://english.sm.dk/media/14900/consolidation-act-on-social-services.pdf

19

34. Tijs Slaats, Sgren Debois, Thomas Hildebrandt: Open to Change: A Theory for
Iterative Test-Driven Modelling. In: BPM. LNCS, vol. 11080, pp. 31-47. Springer
(2018)

35. Winter, K., Rinderle-Ma, S.: Deriving and Combining Mixed Graphs from Regu-
latory Documents Based on Constraint Relations. In: Procs. of CAiSE. vol. 11483,
pp. 430—-445. Springer International Publishing, Cham (2019)

	Chain of events: Modular Process Models for the Law

