
K. Honda and A. Mycroft (Eds.): Programming Language
Approaches to Concurrency and communication-cEntric
Software 2010 (PLACES’10)
EPTCS 69, 2011, pp. 29–43, doi:10.4204/EPTCS.69.3

c©M. Carbone & D. Grohmann & T. Hildebrandt & H. López
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

A Logic for Choreographies∗

Marco Carbone Davide Grohmann Thomas T. Hildebrandt Hugo A. López
IT University of Copenhagen, Rued Langgaards Vej 7, 2300 København S, Denmark

{carbonem,davg,hilde,lopez}@itu.dk

We explore logical reasoning for the global calculus, a coordination model based on the notion of
choreography, with the aim to provide a methodology for specification and verification of structured
communications. Starting with an extension of Hennessy-Milner logic, we present the global logic
(GL), a modal logic describing possible interactions among participants in a choreography. We
illustrate its use by giving examples of properties on service specifications. Finally, we show that,
despite GL is undecidable, there is a significant decidable fragment which we provide with a sound
and complete proof system for checking validity of formulae.

1 Introduction

Due to the continuous growth of technologies, software development is recently shifting its focus on
communication, giving rise to various research efforts for proposing new methodologies dealing with
higher levels of complexity. A new software paradigm, known as choreography, has emerged with
the intent to ease programming of communication-based protocols. Intuitively, a choreography is a
description of the global flow of execution of a system where the software architect just describes which
and in what order interactions can take place. This idea differs from the standard approach where the
communication primitives are given for each single entity separately. A good illustration can be seen in
the way a soccer match is planned: the coach has an overall view of the team, and organises (a priori)
how players will interact in each play (the rôle of a choreography); once in the field, each player performs
his role by interacting with each of the members of his team by throwing/receiving passes. The way each
player synchronise with other members of the team represents the rôle of an orchestration.

The work in [4] formalises the notion of choreography in terms of a calculus, dubbed the global
calculus, which pinpoints the basic features of the choreography paradigm. Although choreography
provides a good abstraction of the system being designed allowing to forget about common problems
that can arise when programming communication (e.g. races over a channel), it can still have complex
structures hence being often error prone. Additionally, choreography can be non-flexible in early design
stages where the architect might be interested in designing only parts of a system as well as specifying
only parts of a protocol (e.g. initial and final interactions). In this view, we believe that a logical approach
can allow for more modularity in designing systems e.g. providing partial specification of a system using
the choreography paradigm.

In order to illustrate the approach proposed in this work, let us consider an online booking scenario.
On one side, consider an airline company AC which offers flights directly from its website. On the other
side, there is a customer looking for the best offers. We can informally describe the interaction protocol
in terms of a sequence of allowed interactions (as in a choreography) as follows:

∗The authors are listed in alphabetical order.

http://dx.doi.org/10.4204/EPTCS.69.3
http://creativecommons.org
http://creativecommons.org/licenses/by-nc-nd/3.0/

30 A logic for Choreographies

1. Customer establishes a communication with AC;
2. Customer asks AC for a flight proposal given a set of constraints;
3. AC establishes a communication with partner AC’ serving the destination asked by the costumer;
4. AC forwards the request made by the customer;
5. AC’ sends an offer to AC;
6. AC forwards the offer to the customer

Note that each step above represents a communication. In the same way that a choreographical specifica-
tion describes each of the interactions between participants, a logical characterisation of choreographies
denotes formulae describing the evolution of such interactions. However, a logical characterisation gives
extra flexibility to the specification of interactions: When writing a logical property describing specific
communication patterns we focus on describing only the sequence of key interactions, leaving room for
implementations that include extra behaviour that does not compromise the fulfilment of the property.
For instance, in the above example, one can describe a property leaving out the details on the forward
of the request to the airline partner, in a statement like “given an interaction between the customer and
AC featuring a booking request, then there is an eventual response directed to the customer with an
offer matching the original session” (in this case, the offer is not necessarily from the airline originally
contacted but from one of its partners).

In this document, we provide a link between choreographies and logics. Starting with an extension
of Hennessy-Milner logic [10], we provide the syntax and the semantics of a logic for the global calculus
as well as several examples of choreographical properties. On decidability issues, we found out that
the whole set of the logic is undecidable on the global calculus with recursion. As a result, we focus
our studies in a decidable fragment, providing a proof system that allows for property verification of
choreographies and show that it is sound and complete, in the sense that all and only valid formulae
specified in the global logic can be provable in the proof system. Moreover, we can conclude that the
proof checking algorithm using this proof system is terminating.

Overview of the document First, in Section 2 we recall the formal foundations of the global calculus,
and equip it with a labelled transition semantics. A logic characterisation of the calculus and several
examples of the use of the logic are presented in Section 3. We proceed with the study of undecidability
for the logic in Section 4, and a proof system relating the logical characterisation and the global calculus
for a decidable fragment of the language is presented in Section 5. Finally, concluding remarks are
presented in Section 6.

2 The Global Calculus

The Global Calculus (GC) [4, 5] originates from the Web Service Choreography Description Language
(WS-CDL) [12], a description language for web services developed by W3C. Terms in GC describe
choreographies as interactions between participants by means of message exchanges. The description
of such interactions is centred on the notion of a session, in which two interacting parties first establish
a private connection via some public channel and then interact through it, possibly interleaved with
other sessions. More concretely, an interaction between two parties starts by the creation of a fresh
session identifier, that later will be used as a private channel where meaningful interactions take place.
Each session is fresh and unique, so each communication activity will be clearly separated from other
interactions. In this section, we provide an operational semantics for GC in terms of a label transition

M. Carbone & D. Grohmann & T. Hildebrandt & H. López 31

systems (LTS) [16] describing how global descriptions evolve, and relate to the type discipline that
describes the structured sequence of message exchanges between participants from [5].

2.1 Syntax

Let C ,C ′, . . . denote terms of the calculus, often called interactions or choreographies; A,B,C, . . . range
over participants; k,k′, . . . are linear channels; a,b,c, . . . shared channels; v,w, . . . variables; X ,Y, . . .
process variables; l, li, . . . labels for branching; and finally e,e′, . . . over unspecified arithmetic and other
first-order expressions. We write e@A to mean that the expression e is evaluated using the variable
related to participant A in the store.

Definition 2.1. The syntax of the global calculus [4] is given by the following grammar:

C ::= 0 (inaction)

| A→B:a(k). C (init)

| A→B : k〈e,y〉. C (com)

| A→B:k[li : Ci]i∈I (choice)

| C1 | C2 (par)

| ife@A thenC1 elseC2 (cond)

| X (recvar)

| µX . C (recursion)

Intuitively, the term (inaction) denotes a system where no interactions take place. (init) denotes a session
initiation by A via B’s service channel a, with a fresh session channel k and continuation C . Note that k
is bound in C . (com) denotes an in-session communication of the evaluation (at A’s) of the expression e
over a session channel k. In this case, y does not bind in C (our semantics will treat y as a variable in the
store of B). (choice) denotes a labelled choice over session channel k and set of labels I. In (par), C1 | C2
denotes the parallel product between C1 and C2. (cond) denotes the standard conditional operator where
e@A indicates that the expression e has to be evaluated in the store of participant A. In (recursion), µX .C
is the minimal fix point operation for recursion, where the variable X of (recvar) is bound in C . The free
and bound session channels and term variables are defined in the usual way. The calculus is equipped
with a standard structural congruence ≡, defined as the minimal congruence relation on interactions C ,
such that ≡ is a commutative monoid with respect to | and 0, it is closed under alpha equivalence ≡α of
terms, and it is closed under the recursion unfolding, i.e., µX .C ≡ C [µX .C /X].

Remark 2.2 (Differences with the approach in [5]). Excluding the lack of local assignment, we argue
that this monadic version of GC is, to some extent, as expressive as the one Global Calculus originally
reported in [5]. In particular, note that A→B : k〈op,e,y〉 in [5] captures both selection and message
passing which are instead disentangled in our case (mainly for clarity reasons). The absence of op in the
interaction process A→B : k〈e,y〉 can be easily encoded with the existing operators. In fact, Σi∈IA→B :
k〈opi,e,y〉. C ′i can be decomposed into A→B:k[opi : C ′′i]i∈I where C ′′i = A→B : k〈e,y〉. C ′i (although we
lose atomicity).

2.2 Semantics

We give the operational semantics in terms of configurations (σ ,C), where σ represents the state of
the system and C the choreography actually being executed. The state σ contains a set of variables

32 A logic for Choreographies

(G-INIT)
h fresh

(σ ,A→B:a(k). C)
init A→B on a(h)
−−→ (σ ,C [h/k])

(G-COM)
σ(e@A) ⇓ v

(σ ,A→B : k〈e,x〉. C)
com A→B over k
−−→ (σ [x@B 7→ v],C)

(G-CHOICE)

(σ ,A→B:k[li : Ci]i∈I)
sel A→B over k:li
−−→ (σ ,Ci)

(G-PAR)
(σ ,C1)

`
−−→ (σ ′,C ′1)

(σ ,C1 | C2)
`
−−→ (σ ′,C ′1 | C2)

(G-STRUCT)
C ≡ C ′ (σ ,C ′)

`
−−→ (σ ′,C ′′) C ′′ ≡ C ′′′

(σ ,C)
`
−−→ (σ ′,C ′′′)

(G-IFT)
σ(e@A) ⇓ tt (σ ,C1)

`
−−→ (σ ′,C ′1)

(σ , ife@A thenC1 elseC2)
`
−−→ (σ ′,C ′1)

(G-IFF)
σ(e@A) ⇓ ff (σ ,C2)

`
−−→ (σ ′,C ′2)

(σ , ife@A thenC1 elseC2)
`
−−→ (σ ′,C ′2)

Table 1: Operational Semantics for the Global Calculus

labelled by participants. As described in the previous subsection, a variable x located at participant A
is written as x@A. The same variable name labelled with different participant names denotes different
variables (hence σ(x@A) and σ(x@B) may differ). Formally, the operational semantics is defined as

a labelled transition system (LTS). A transition (σ ,C)
`
−−→ (σ ′,C ′) says that a choreography C in a

state σ executes an action (or label) ` and evolves into C ′ with a new state σ ′. Actions are defined
as ` = {init A→ B on a(k),com A→ B over k,sel A→ B over k : li}, denoting initiation, in-session
communication and branch selection, respectively. We write (σ ,C)−−→ (σ ′,C ′) when ` irrelevant, and
−−→∗ denotes the transitive closure of −−→. The transition relation −−→ is defined as the minimum
relation on pairs state/interaction satisfying the rules in Table 1.

Intuitively, transition (G-INIT) describes the evolution of a session initiation: after A initiates a ses-
sion with B on service channel a, A and B share the fresh channel h locally. (G-COM) describes the main
interaction rule of the calculus: the expression e is evaluated into v in the A-portion of the state σ and
then assigned to the variable x located at B resulting in the new state σ [x@B 7→ v]. (G-CHOICE) chooses
the evolution of a choreography resulting from a labelled choice over a session key k. (G-IFT) and (G-
IFF) show the possible paths that a deterministic evolution of a choreography can produce. (G-PAR) and
(G-STRUCT) behave as the standard rules for parallel product and structural congruence, respectively.

M. Carbone & D. Grohmann & T. Hildebrandt & H. López 33

Remark 2.3 (Global Parallel). Parallel composition in the global calculus differs from the notion of
parallel found in standard concurrency models based on input/output primitives [14]. In the latter, a
term P1 | P2 may allow interactions between P1 and P2. However, in the global calculus, the parallel
composition of two choreographies C1 |C2 concerns two parts of the described system where interactions
may occur in C1 and C2 but never across the parallel operator |. This is because an interaction A→
B . . . abstracts from the actual end-point behaviour, i.e., how A sends and B receives. In this model,
dependencies between two choreographies can be expressed by using variables in the state σ .

In its original presentation [5], GC comes equipped with a reduction semantics unlike the one pre-
sented in Table 1. Our LTS semantics has the advantage of allowing to observe changes on the behaviour
of the system, which will prove useful when relating to the logical characterisation in Section 3. We
conjecture that our proposed LTS semantics and the reduction semantics of the global calculus originally
presented in [5] coincide (taking into account the considerations in Remark 2.2).
Example 2.4 (Online Booking). We consider the example presented in the introduction, i.e., a simplified
version of the on-line booking scenario presented in [13]. Here, the customer (Cust) establishes a session
with the airline company (AC) using service (on-line booking, shorted as ob) and creating the session
key k1. Once the session is established, the customer will request the company about a flight offer with
his booking data, along the session key k1. The airline company will process the customer request and,
after requesting another airline company (AC’) for the service, will send a reply back with an offer. The
customer will eventually accept the offer, sending back an acknowledgment to the airline company using
k1. The following specification in the GC represents the protocol:

COB = Cust→AC:ob(k1). Cust→AC : k1〈booking,x〉. AC→AC’:ob(k2). (OB)

AC→AC’ : k2〈x,x′〉. AC’→AC : k2〈offer,y〉. AC→Cust : k1〈y,y′′〉. Cust→AC : k1〈accept,z〉. 0

2.3 Session Types for the Global Calculus

We use a generalisation of session types [11] for global interactions, first presented in [5]. Session types
in GC are used to structure sequence of message exchanges in a session. Their syntax is as follows:

α =↑ (θ).α | ↓ (θ).α | &{li : αi}i∈I | ⊕{li : αi}i∈I | end | µt. α | t (1)

where θ ,θ ′, . . . range over value types bool,string,int, α,α ′, . . . are session types. The first four
types are associated with the various communication operations. ↓ (θ).α and ↑ (θ).α are the input and
output types respectively. Similarly, &{li : αi}i∈I is the branching type while⊕{li : αi}i∈I is the selection
type. The type end indicates session termination and is often omitted. µt. α indicates a recursive type
with t as a type variable. µt. α binds the free occurrences of t in α . We take an equi-recursive view on
types, not distinguishing between µt. α and its unfolding α[µt. α/t].

A typing judgment has the form Γ` C : ∆, where Γ,∆ are service type and session type environments,
respectively. Typically, Γ contains a set of type assignments of the form a@A : α , which says that a
service a located at participant A may be invoked and run a session according to type α . ∆ contains
type assignments of the form k[A,B] : α which says that a session channel k identifies a session between
participants A and B and has session type α when seen from the viewpoint of A. The typing rules are
omitted, and we refer to [6] for the full account of the type discipline noting that the observations made
in Remark 2.2 will require extra typing rules.

Returning to the specification (OB) in Example 2.4, the service type of the airline company AC at
channel ob can be described as:

ob@AC : (k1,k2) k1 ↓ booking(string). k2 ↑ x(string). k2 ↓ offer(int). k1 ↑ y(int). k1 ↓ accept(int). end .

34 A logic for Choreographies

φ ,χ ::= ∃t. φ (f-exists)

| φ ∧χ (f-and)

| ¬φ (f-neg)

| 〈`〉φ (f-action)

| end (f-termination)

| e1@A = e2@B (f-equality)

| φ | χ (f-parallel)

| ♦φ (f-may)

` ::= init A→ B on a(k) (l-init)

| com A→ B over k (l-com)

| sel A→ B over k : l (l-branch)

Table 2: GL : Syntax of formulae

Assumption 2.5. In the sequel, we only consider choreographies that satisfy the typing discipline.

3 GL : A Logic for the Global Calculus

In this section, we introduce a logic for choreographies, inspired by the modal logic for session types
presented in [1]. The logical language comprises assertions for equality and value/name passing.

3.1 Syntax

The grammar of assertions is given in Table 2. Choreography assertions (ranged over by φ ,φ ′,χ, . . .)
give a logical interpretation of the global calculus introduced in the previous section. The logic includes
the standard First Order Logic (FOL) operators ∧, ¬, and ∃. In ∃t. φ , the variable t is meant to range over
service and session channels, participants, labels for branching and basic placeholders for expressions.
Accordingly, it works as a binder in φ . In addition to the standard operators, the operator (f-action)
represents the execution of a labelled action ` followed by the assertion φ . Those labels in ` match
the ones in the LTS of GC, i.e., they are (l-init), (l-com), and (l-branch). The formula (f-termination)
represents the process termination. We also include an unspecified, but decidable, (f-equality) operator
on expressions as in [1]. (f-may) denotes the standard eventually operators from Linear Temporal Logic
(LTL) [9]. The spatial operator (f-parallel) denotes composition of formulae: because of the unique
nature of parallel composition in choreographies, we have used the symbol | (as in separation logic [18]
and spatial logic [3]) in order to stress the fact that there is no interference between two choreographies
running in parallel.

Notation 3.1 (Existential quantification over action labels). In order to simplify the readability, we
introduce the concept of existential quantification over action labels as a short-cut to mean the following:

∃`. 〈`〉φ def
= ∃A,B,a,k. 〈init A→ B on a(k)〉. φ ∨
∃A,B,k. 〈com A→ B over k〉. φ ∨
∃A,B,k, l. 〈sel A→ B over k : l〉. φ .

Remark 3.2 (Derived Operators). We can get the full account of the logic by deriving the standard set
of strong modalities from the above presented operators. In particular, we can encode the constant true

M. Carbone & D. Grohmann & T. Hildebrandt & H. López 35

(tt) and false (ff), the next (◦φ) and the always operators (�φ) from LTL.

tt
def
= (0@A = 0@A) ff

def
= (0@A = 1@A) (e1 6= e2)

def
= ¬(e1 = e2)

∀x. φ
def
= ¬∃x. ¬φ φ ∨χ

def
= ¬(¬φ ∧¬χ) φ ⇒ χ

def
= ¬φ ∨χ

�φ
def
= ¬♦¬φ [`]φ

def
= ¬〈`〉¬φ ◦φ def

= ∃`. 〈`〉φ .

In the rest of this section, we illustrate the expressiveness of our logic through a sequence of sim-
ple, yet illuminating examples, giving an intuition of how the modalities introduced plus the existential
operator ∃ allow to express properties of choreographies.

Example 3.3 (Availability, Service Usage and Coupling). The logic above allows to express that, given
a service invoker (known as A in this setting) requesting the service a, there exists another participant
(called B in the example) providing a with A invoking it. This can be formulated in GL as follows:

∃B. 〈init A→ B on a(k)〉tt .

Assume now, that we want to ensure that services available are actually used. We can use the dual
property for availability, i.e., for a service provider B offering a, there exists someone invoking a:

∃A. 〈init A→ B on a(k)〉tt .

Verifying that there is a service pairing two different participants in a choreography can be done by exis-
tentially quantifying over the shared channels used in an initiation action. A formula in GL representing
this can be the following one:

∃a. 〈init A→ B on a(k)〉tt .

Example 3.4 (Causality Analysis). The modal operators of the logic can be used to perform studies of
the causal properties that our specified choreography can fulfil. For instance, we can specify that given an
expression e evaluated to true at participant A, there is an eventual firing of a choreography that satisfies
property φ1, whilst φ2 will never be satisfied. Such a property can be specified as follows:

(e@A = tt)∧♦(φ1)∧�¬φ2 .

An interesting aspect of our logic is that it allows for the declaration of partial specification properties
regarding the interaction of the participants involved in a choreography. Take for instance the interaction
diagram in Figure 1. The participant A invokes service b at B’s and then B invokes D’s service d. At this
point, D can send the content of variable x to A in two different ways: either by using those originally
established sessions or by invoking a new service at A’s. However, at the end of both computation paths,
variable z (located at A’s) will contain the value of x. In the global calculus, this two optional behaviour
can be modelled as follows:

C1 = A→B:b(k). B→D:d(k′). D→B : k′〈x,yB〉. B→A : k〈yB,z〉. 0 (Option 1)

C2 = A→B:b(k). B→D:d(k′). D→A:a(k′′). D→A : k′′〈x,z〉 . 0 . (Option 2)

We argue that, under the point of view of A, both options are sufficiently good if, after an initial interaction
with B is established, there is an eventual response that binds variable z. Such a property can be expressed
by the GL formula:

∃X ,k′′. 〈init A→ B on a(k)〉♦
(
〈com X → A over k′′〉(z@A = x@D)

)
. end .

36 A logic for Choreographies

Example 3.5 (Response Abstraction).

Option 2

Option 1

A B D

Init b(k)
Init d(k')

k' (x)
k (x)

k'' (x)

Init a(k'')

Figure 1: Diagram of a partial specification.

Notice that both the choreographies (Option 1) and (Option 2) satisfy the partial specification above.
This will be clear in Section 3.2 where we introduce the semantics of logic.

Also note that a third option for the protocol at hand is to use delegation (the ability of communicating
session keys to third participants not involved during session initiation). However, the current version of
the global calculus does not feature such an operation and we leave it as future work.
Example 3.6 (Connectedness). The work in [5] proposes a set of criteria for guaranteeing a safe end-
point projection between global and local specifications (note that the choreography in the previous
example does not respect such properties). Essentially, a valid global specification has to fulfil three
different criteria, namely Connectedness, Well-threadedness and Coherence. It is interesting to see that
some of these criteria relate to global and local causality relations between the interactions in a choreog-
raphy, and can be easily formalised as properties in the choreography logic presented here. Below, we
consider the notion of connectedness and leave the other cases as future work. Connectedness dictates a
global causality principle among interactions: any two consecutive interactions . . .A→ B. C→ D . . . in
a choreography are such that B = C. In the following, let Interact(A,B)φ be true whenever 〈`〉φ holds
for some ` with an interaction from A to B. Connectedness can be specified as:

∀A,B. �
(
Interact(A,B)tt⇒∃C.

(
Interact(A,B)Interact(B,C)tt∨ Interact(A,B)¬∃`〈`〉tt

))
.

3.2 Semantics

We now give a formal meaning to the assertions introduced above with respect to the semantics of the
global calculus introduced in the previous section. In particular, we introduce the notion of satisfaction.
We write C |=σ φ whenever a state σ and a choreography C satisfy a GL formula φ . The relation |=σ

is defined by the rules given in Table 3. In the ∃t. φ case, w should be an appropriate value according to
the type of t, e.g., a participant if t is a participant placeholder.
Definition 3.7 (Satisfiability, Validity and Logical Equivalence).

M. Carbone & D. Grohmann & T. Hildebrandt & H. López 37

C |=σ end
def⇐⇒ C ≡ 0

C |=σ (e1@A = e2@B) def⇐⇒ σ(e1@A) ⇓ v and σ(e2@B) ⇓ v

C |=σ 〈`〉φ
def⇐⇒ (σ ,C)

`
−−→ (σ ′,C ′) and C ′ |=σ ′ φ

C |=σ φ ∧χ
def⇐⇒ C |=σ φ and C |=σ χ

C |=σ ¬φ
def⇐⇒ C 6|=σ φ

C |=σ ∃t. φ
def⇐⇒ C |=σ φ [w/t] (for some appropriate w)

C |=σ ♦φ
def⇐⇒ (σ ,C)−−→∗ (σ ′,C ′) and C ′ |=σ ′ φ

C |=σ φ | χ def⇐⇒ C ≡ C1 | C2 such that C1 |=σ φ and C2 |=σ χ

Table 3: Assertions of the Choreography Logic

• A formula φ is satisfiable if there exists some configuration under which it is true, that is, C |=σ φ

for some (C ,σ).

• A formula φ is valid if it is true in every configuration, that is, C |=σ φ for every (σ ,C).

• A formula χ is a logical consequence of a formula φ (or φ logically implies χ), denote with an
abuse of notation as φ |= χ , if every configuration (σ ,C) that makes φ true also makes χ true.

• We say that a formula φ is logical equivalent to a formula χ , written φ ≡|= χ , if φ |= χ iff χ |= φ .

4 Undecidability of Global Logic

In this section we focus on the undecidability of the global logic for the global calculus with recursion
given in Section 2. In order to prove that the global logic is undecidable, we use a reduction from the Post
Correspondence Problem (PCP) [17] similarly to the one proposed in [8]. The idea is to encode in the
global calculus a “program” which simulates the construction of PCP. We first give a formal definition
of the PCP. In the sequel, · denotes word concatenation.

Definition 4.1 (PCP). Let s, t, . . . range over Σ∗ where Σ = {0,1} and let ε be the empty word. An
instance of PCP is a set of pairs of words {(s1, t1), . . . ,(sn, tn)} over Σ∗×Σ∗. The Post Correspondence
Problem is to find a sequence i0, i1, . . . , ik (1≤ i j ≤ n for all 0≤ j ≤ k) such that si0 · . . . · sik = ti0 · . . . · tik .

Intuitively, PCP consists of finding some string in Σ∗ which can be obtained by the concatenation si0 · . . . ·
sik as well as by ti0 · . . . · tik . Such a problem has been proved to be undecidable [17]. Our goal is to find a
GC term that takes a random pair of words from an instance of PCP and append them to an “incremental
pair” of words which encodes the current state of the sequences si0 · . . . · sik and ti0 · . . . · tik . Technically,
we need a choreography that assigns randomly a natural number in {1, . . . ,n} to a variable r in some
participant B, and another choreography that picks a pair of words from the PCP instance, accordingly
to value in the variable r@B, and then appends them to the “incremental pair” of words in A. Formally,

Definition 4.2 (Encoding of PCP). Let A1, . . . ,An,A,B be participants and a,b shared names for ses-

38 A logic for Choreographies

sions, then define the two choreographies as shown below:

Random(A1, . . . ,An,B,a)
def
= µX . A1→B:a(k). A1→B : k〈1,r〉. X

| µX . A2→B:a(k). A2→B : k〈2,r〉. X

| . . .
| µX . An→B:a(k). An→B : k〈n,r〉. X

Append(A,B,b)
def
= µX . A→B:b(k). A→B : k〈str1, tmp1〉. A→B : k〈str2, tmp2〉.

if r@B = 1 then
B→A : k〈tmp1 · s1,str1〉. B→A : k〈tmp2 · t1,str2〉. X

else if r@B = 2 then
B→A : k〈tmp1 · s2,str1〉. B→A : k〈tmp2 · t2,str2〉. X

else if r@B = 3 then
...

else if r@B = n then
B→A : k〈tmp1 · sn,str1〉. B→A : k〈tmp2 · tn,str2〉. X

else X

We define the initial configuration (σ ,C) to be formed by the choreography and the state below:

C
def
= Random(A1, . . . ,An,B,a) | Append(A,B,b)

σ
def
= [str1@A 7→ ε, str2@A 7→ ε, tmp1@B 7→ ε, tmp2@B 7→ ε, r@B 7→ 1] .

For encoding the PCP existence question (si0 · . . . · sik = ti0 · . . . · tik) we can encode it as a GL formula:

φ
def
= ♦

(
(str1@A = str2@A)∧ (str1@A 6= ε)∧ (str2@A 6= ε)

)
.

Above, each participant Ai (with i ∈ {1, . . . ,n}) recursively opens a session with participant B and writes
in the variable r@B the value i. Moreover, the participant B stores the knowledge of all the word pairs
(si, ti), while the participant A takes randomly a word pair from B and then append it to his incremental
pair of words: (str1,str2). Next, the formula φ states that there exists a computational path from the
initial configuration to a configuration which stores in str1 and str2 two equal non-empty strings.

Theorem 4.3. The global logic is undecidable on the global calculus with recursion.

Proof. (Sketch) The statement C |=σ φ holds iff the encoded PCP has a solution. Indeed, if the initial
configuration (σ ,C) satisfies the formula φ then it means there exists a configuration (σ ′,C ′) where
(str1@A = str2@A)∧ (str1@A 6= ε)∧ (str2@A 6= ε) holds. Hence, there is a sequence of i0, . . . , ik such
that str1 = si0 · . . . · sik = ti0 · . . . · tik = str2, that is, the instance of PCP has a solution.

Remark 4.4. The undecidability result presented in this section shows that the global calculus is con-
siderably expressive, despite the choreography approach offers a simplification in the specification of
concurrent communicating systems as argued in [5]. The encoding in Definition 4.2 shows that allowing
state variables (hence local variables that can be accessed by various threads) increases the expressive
power of the language. Indeed, we could just look at GC as a simple concurrent language with a “shared”
store where assignment to variables is just in-session communication. In this view, we conjecture that
removing variables and focusing only on communication would make the logic decidable.

M. Carbone & D. Grohmann & T. Hildebrandt & H. López 39

5 Proof System for Recursion-free Choreographies

In this section, we present a model checking algorithm (in the form of a proof system) to decide whether a
global logic formula is satisfied by a recursion-free configuration of the global calculus. Indeed, similarly
to [8], it turns out that the logic is decidable on the recursion-free choreographies.1 We also prove the
soundness and completeness of the proposed proof system w.r.t. the assertion semantics.

In order to reason about judgments C |=σ φ , we propose a proof (or inference) system for asser-
tions of the form C `σ φ . Intuitively, we want C `σ φ to be as approximate as possible to C |=σ φ

(ideally, they should be equivalent). We write C `σ φ for the provability judgement where (σ ,C) is a
configuration and φ is a formula.

Notation 5.1. We define the set of continuations configuration after an action ` and the reachable con-
figurations, both starting from a configuration (σ ,C), as follows:

Next(σ ,C , `)
def
= {(σ ′,C ′) | (σ ,C)

`
−−→ (σ ′,C ′)}

Reachable(σ ,C)
def
= {(σ ′,C ′) | (σ ,C)−−→∗ (σ ′,C ′)} .

Normalisation is required by the proof system to infer equality of choreographies up to structural equi-
valence (Especially for the [·] | [·] operator). We define Norm(C) to be a normalisation function from
recursion-free choreographies into multi-sets of choreographies:

Norm(A→B : k〈e,y〉. C)
def
= [A→B : k〈e,y〉. C] Norm(A→B:k[li : Ci]i∈I)

def
= [A→B:k[li : Ci]i∈I]

Norm(A→B:a(k). C)
def
= [A→B:a(k). C] Norm(if e@A then C1 else C2)

def
= [if e@A then C1 else C2]

Norm(0) def
= [] Norm(C1 | C2)

def
= [P1, . . . ,Pn,Q1, . . . ,Qm] if

Norm(C1) = [P1, . . . ,Pn] and
Norm(C2) = [Q1, . . . ,Qm] .

Lemma 5.2 (Normalisation preserves structural equivalence). Let C be a recursion-free choreogra-
phy and Norm(C) = [P1, . . . ,Pn], then C ≡∏

n
i=1 Pi.

Proof. By induction on the structure of the choreography C .

Case C = 0: We have Norm(0) = [], and ∏
0
i=1 Pi = 0≡ 0.

Case C = C1 | C2: We have that Norm(C1) = [P1, . . . ,Pn], Norm(C2) = [Q1, . . . ,Qm], and ∏
n
i=1 Pi ≡ C1,

∏
m
j=1 Q j ≡ C2 by induction hypothesis. Then, we can derive that ∏

n
i=1 Pi |∏m

j=1 Q j ≡ C1 | C2.

All the other cases: Trivially we have that Norm(C) = [P1], where P1 = C , then ∏
1
i=1 Pi ≡ C .

Definition 5.3 (Entailment). We say that a choreography C entails a formula φ under a state σ , written
C `σ φ , iff the assertion C `σ φ has a proof in the proof system given in Table 4.

Let us now describe some of the inference rules of the proof system. The rule Pend relates the
inaction terms with the termination formula. The rules Pand and Pneg denote rules for conjunction and
negation in classical logic, respectively. The rule for parallel composition is represented in Ppar; it does
not indicate the behaviour of a given choreography, but hints information about the structure of the
process: Ppar juxtaposes the behaviour of two processes and combines their respective formulae by the
use of a separation operator. The next rule, Paction requires that the process P in the configuration σ can

1Removing recursion yields a decidability result orthogonal to the conjecture formulated in Remark 4.4

40 A logic for Choreographies

Pend
Norm(C) = []

C `σ end
Pand

C `σ φ C `σ χ

C `σ φ ∧χ
Pneg

C 6`σ φ

C `σ ¬φ

Ppar
Norm(C) = [P1, . . . ,Pn] ∃I,J. I∪ J = {1, . . . ,n}∧ I∩ J = /0∧∏i∈I Pi `σ φ1∧∏ j∈J Pj `σ φ2

C `σ φ1 | φ2

Paction
∃(σ ′,C ′) ∈ Next(σ ,C , `). C ′ `σ ′ φ

C `σ 〈`〉φ
Pmay

∃(σ ′,C ′) ∈ Reachable(σ ,C). C ′ `σ ′ φ

C `σ ♦φ

P∃
∃w ∈ f n(C)∪ f n(φ). C `σ φ [w/t]

C `σ ∃t. φ
Pexp

σ(e1@A) ⇓ v σ(e2@B) ⇓ v
C `σ (e1@A = e2@B)

Table 4: Proof system for the Global Calculus.

perform an action labelled `, so we must search for a continuations of (σ ,C) after an action ` and find a
configuration which satisfies the rest of the formula, i.e., φ . Analogously, Pmay looks for a continuation
in the reachable configuration of (σ ,C) in oder to satisfy φ . The rule P∃ says that in order to satisfy an
∃t. φ , it is sufficient to find a value w for t in the free names used by the choreography C or in the free
names used by the formula φ . Finally, the rule Pexp denotes evaluation of expressions.

We now proceed to prove the soundness of the proof system with respect to the semantics of asser-
tions presented before.
Lemma 5.4 (Structural congruence preserves satisfability). If C ≡ C ′ and C |=σ φ , then C ′ |=σ φ .

Proof. (Sketch) It follows from structural induction over φ .

Theorem 5.5 (Soundness). For any configuration (σ ,C), where C is recursion-free, and every formula
φ , if C `σ φ then C |=σ φ .

Proof. It follows by induction on the derivation of `σ .
Case Pend: Straight consequence of Lemmas 5.2 and 5.4, indeed C ≡ 0 and C |=σ end.

Case Pand: By induction hypothesis and conjunction.

Case Pneg: We have that C `σ ¬φ , so by Pneg we get C 6`σ φ . By induction hypothesis we have that
C 6|=σ φ , which is the necessary condition to deduce C |=σ ¬φ .

Case Ppar: We have that C `σ φ1 | φ2, then Norm(C) = [P1, . . . ,Pn], and there exist I,J such that I∪J =
{1, . . . ,n}, I ∩ J = /0, ∏i∈I Pi `σ φ1, and ∏ j∈J Pj `σ φ2. By induction hypothesis we know that
∏i∈I Pi |=σ φ1 and ∏ j∈J Pj |=σ φ2, then by Lemma 5.2 we have C ≡∏i∈I Pi |∏ j∈J Pj, hence it is
immediate to prove that C |=σ φ1 | φ2.

Case Paction: We have that C `σ 〈`〉φ and by Paction then C ′ `σ ′ φ and (σ ′,C ′) ∈ Next(σ ,C , `). From
the induction hypothesis we have that C ′ |=σ ′ φ , then we have to show that C |=σ 〉`〈φ . From the

assertion semantics we know that C |=σ 〈`〉φ iff (σ ,C ′)
`
−−→ (σ ′,C ′) and C ′ |=σ ′ φ , which holds

immediately by the selection of (σ ′,C ′) ∈ Next(σ ,C , `) and the induction hypothesis.

Case Pmay: We have that C `σ ♦φ and by Pmay then C ′ `σ ′ φ and (σ ′,C ′) ∈ Reachable(σ ,C). From
the induction hypothesis we have that C ′ |=σ ′ φ , then we have to show that C |=σ ♦φ . From the
assertion semantics we know that C |=σ ♦φ ⇐⇒ (σ ,C ′) −−→∗ (σ ′,C ′) and C ′ |=σ ′ φ , which
holds immediately by the selection of (σ ′,C ′) ∈ Reachable(σ ,C) and the induction hypothesis.

M. Carbone & D. Grohmann & T. Hildebrandt & H. López 41

Case P∃: We have that C `σ ∃t.φ and by P∃ we have that ∃w ∈ f n(C)∪ f n(φ) and C `σ φ [w/t].
By induction hypothesis we know that C |=σ φ [w/t] with appropriate w ∈ f n(C)∪ f n(φ), then
C |=σ ∃t.φ follows from the definition of the assertion semantics.

Case Pexp: It holds trivially by checking if σ(e1@A) ⇓ v and σ(e2@B) ⇓ v.

Lemma 5.6. For every configuration (σ ,C), where C is recursion free, and every formula ∃t. φ , if
{n1, . . . ,nk}= f n(C)∪ f n(φ), then C |=σ ∃t. φ iff ∃m ∈ {n1, . . . ,nk} such that C |=σ φ [m/t].

Proof. (Sketch) By induction on the structure of φ . It is similar to the proof of [7, Lemma 5.3(3)].

Theorem 5.7 (Completeness). For any configuration (σ ,C), where C is recursion-free, and every for-
mula φ , if C |=σ φ then C `σ φ .

Proof. By rule induction on the derivation of |=σ .

Case C |=σ end: We have that C ≡ 0 and hence Norm(C) = [] by Lemma 5.2. Now, the thesis follows
immediately from the application of Pend.

Case C |=σ (e1@A = e2@B): It follows immediately by the application of Pexp.

Case C |=σ 〈`〉φ ′: Take (σ ,C)
`
−−→ (σ ′,C ′) and C ′ |=σ ′ φ ′, we have by induction hypothesis that

C ′ `σ ′ φ ′. Now, we have to show that C `σ 〈`〉φ ′. By the fact that (σ ,C)
`
−−→ (σ ′,C ′), we have

that (σ ′,C ′) ∈ Next(σ ,C , `), hence, we can apply rule Paction and we are done.

Case C |=σ φ ∧χ: We have that C |=σ φ and C |=σ χ . From the induction hypothesis we have that
C `σ φ and C `σ χ . The application of Pand lead to C `σ φ ∧χ as desired.

Case C |=σ ¬φ : From the definition of the assertion semantics we have that C |=σ ¬φ iff C 6|=σ φ . We
have to show that C `σ ¬φ . We proceed by contradiction. Take a (φ ,C) such that C `σ φ , then
from Theorem 5.5 we have that C |=σ φ , which is a contradiction to C |=σ ¬φ .

Case C |=σ ∃t. φ : We have that C |=σ ∃t.φ and by the definition in the assertion semantics we have
that C |=σ φ [w/t] for an appropriate w. By induction hypothesis we know that C `σ φ [w/t].
Lemma 5.6 guarantees that there exists w ∈ f n(C)∪ f n(φ) in order to derive C `σ ∃t.φ from P∃.

Case C |=σ ♦φ : Take (σ ,C) −−→∗ (σ ′,C ′) and C ′ |=σ ′ φ ′, we have by induction hypothesis that
C ′ `σ ′ φ ′. Now, we have to show that C `σ ♦φ ′. By the fact that (σ ,C) −−→∗ (σ ′,C ′), we
have that (σ ′,C ′) ∈ Reachable(σ ,C), hence, we can apply rule Pmay and we are done.

Case C |=σ φ | χ: We have that C ≡ C1 | C2 and C1 |=σ φ ∧C2 |=σ χ . From the induction hypothesis
C1 `σ φ and C2 `σ χ . Now by Lemma 5.2 we have that C1 ≡∏i∈I Pi and C2 ≡∏ j∈J Pj for some
I,J. So, we can derive C ≡∏i∈I Pi |∏ j∈J Pj, and hence Ppar leads to C1 | C2 `σ φ | χ .

Theorem 5.8 (Termination). For any configuration (σ ,C), where C is recursion-free, and every for-
mula φ , proof-checking algorithm terminates.

Proof. First, notice that all the functions Norm, Next, and Reachable are total and computable. The
proof is by induction over the structure of φ .

Case φ = end: C `σ end iff Norm(C) = [].

Case φ = φ1∧φ2: By conjunction and induction hypothesis on C `σ φ1 and C `σ φ2.

42 A logic for Choreographies

Case φ = ¬φ ′: C `σ φ iff C `σ φ ′ does not hold. But by induction hypothesis we can construct a
terminating proof or confutation for C `σ φ ′. Hence the proof for C `σ φ terminates as well.

Case φ = φ1 | φ2: Suppose Norm(C) = [P1, . . . ,Pn]. Notice that there exists a finite number of possible
partitioning of {1, . . . ,n} in I,J. Hence, for every I,J we can compute ∏i∈I Pi `σ φ1 and ∏ j∈J Pj `σ

φ2, which both terminate by induction hypothesis. By applying Lemma 5.2 we prove the thesis.

Case φ = 〈`〉φ ′: First, notice that the set Next(σ ,C , `) is finite, because the choreographies are finite,
i.e., there are a finite number of actionable transition in a given configuration. For each configura-
tion (σ ′,C ′) ∈ Next(σ ,C , `), C ′ `σ ′ φ ′ terminates by induction hypothesis.

Case φ =♦φ ′: As before, notice that the set Reachable(σ ,C) is finite, because the choreographies are
finite, i.e., the choreographies are recursion free. For each configuration (σ ′,C ′)∈Reachable(σ ,C),
C ′ `σ ′ φ ′ terminates by induction hypothesis.

Case φ = ∃t. φ ′: To prove existence is sufficient to check every derivation by substituting t with a name
w ∈ f n(C)∪ f n(φ). Notice that f n(C)∪ f n(φ) is finite, because both C and φ are so. So, for
every w, we can construct a terminating derivation for C `σ φ ′[w/t] by induction hypothesis.

Case φ = (e1@A = e@@B) : C `σ (e1@A = e@@B) iff e1@A ⇓ v and e@@B ⇓ v.

6 Conclusion and Related Work

The ideas hereby presented constitutes just the first step towards a verification framework for choreogra-
phy. As a future work, our main concerns relate to integrate our framework into other end-point models
and logical frameworks for the specification of sessions. In particular, our next step will focus on relat-
ing the logic to the end-point projection [5], the process of automatically generating end-point code from
choreography. Other improvements to the system proposed include the use of fixed points, essential for
describing state-changing loops, and auxiliary axioms describing structural properties of a choreography.

This work can be fruitfully nourished by related work in types and logics for session-based commu-
nication. In [13] the authors proposed a mapping between the calculus of structured communications
and concurrent constraint programming, allowing them to establish a logical view of session-based com-
munication and formulae in First-Order Temporal Logic. In [1], Berger et al. presented proof systems
characterising May/Must testing pre-orders and bisimilarities over typed π-calculus processes. The con-
nection between types and logics in such system comes in handy to restrict the shape of the processes
one might be interested, allowing us to consider such work as a suitable proof system for the calculus
of end points. Finally, [15] studies a logic for choreographies in a model without services and sessions
while [2] proposes notion of global assertion for enriching multiparty session types with simple formula
describing changing in the state of a session.

Acknowledgements This research has been partially supported by the Trustworthy Pervasive Health-
care Services (TrustCare) and the Computer Supported Mobile Adaptive Business Processes (Cosmobiz)
projects. Danish Research Agency, Grants # 2106-07-0019 (www.TrustCare.eu) and # 274-06-0415
(www.cosmobiz.org).

References
[1] Martin Berger, Kohei Honda & Nobuko Yoshida (2008): Completeness and Logical Full Abstraction in

Modal Logics for Typed Mobile Processes. In Luca Aceto, editor: ICALP’08, LNCS 5126, Springer-Verlag,
Berlin Germany, pp. 99–111, doi:10.1007/978-3-540-70583-3 9.

http://dx.doi.org/10.1007/978-3-540-70583-3_9

M. Carbone & D. Grohmann & T. Hildebrandt & H. López 43

[2] Laura Bocchi, Kohei Honda, Emilio Tuosto & Nobuko Yoshida (2010): A theory of design-by-contract for
distributed multiparty interactions. In: CONCUR’10: Proceedings of the 21st International Conference on
Concurrency Theory, Lecture Notes in Computer Science, Springer - Verlag, pp. 162–176, doi:10.1007/978-
3-642-15375-4 12.

[3] L. Caires & L. Cardelli (2001): A spatial logic for concurrency (part I). In: Theoretical Aspects of Computer
Software, Springer, pp. 1–37, doi:10.1007/3-540-45500-0 1.

[4] M. Carbone, K. Honda & N. Yoshida (2007): A Calculus of Global Interaction based on Session
Types. In: 2nd Workshop on Developments in Computational Models (DCM), ENTCS, pp. 127–151,
doi:10.1016/j.entcs.2006.12.041.

[5] M. Carbone, K. Honda & N. Yoshida (2007): Structured communication-centred programming for web ser-
vices. In: 16th European Symposium on Programming (ESOP), LNCS 4421, Springer, Berlin Heidelberg,
Braga, Portugal, pp. 2–17, doi:10.1007/978-3-540-71316-6 2.

[6] M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown & S. Ross-Talbot (2009): A Theoretical Basis of
Communication-Centred Concurrent Programming. Web Services Choreography Working Group mailing
list, WS-CDL working report .

[7] Luca Cardelli & Andrew D. Gordon (2000): Anytime, Anywhere: Modal Logics for Mobile Ambients. In:
POPL, pp. 365–377, doi:10.1145/325694.325742.

[8] Witold Charatonik & Jean-Marc Talbot (2001): The Decidability of Model Checking Mobile Ambients.
In Laurent Fribourg, editor: CSL, Lecture Notes in Computer Science 2142, Springer, pp. 339–354,
doi:10.1007/3-540-44802-0 24.

[9] E.A. Emerson (1991): Temporal and modal logic. In: Handbook of theoretical computer science (vol. B),
MIT Press, p. 1072.

[10] M. Hennessy & R. Milner (1980): On Observing Nondeterminism and Concurrency. In: Proceedings of
the 7th Colloquium on Automata, Languages and Programming, Springer-Verlag London, UK, pp. 299–309,
doi:10.1007/3-540-10003-2 79.

[11] K. Honda, V.T. Vasconcelos & M. Kubo (1998): Language Primitives and Type Discipline for Structured
Communication-Based Programming. In: 7th European Symposium on Programming (ESOP): Programming
Languages and Systems, Springer-Verlag London, UK, pp. 122–138, doi:10.1007/BFb0053567.

[12] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon & C. Barreto (2004): Web services choreography
description language version 1.0. W3C Working Draft 17, pp. 10–20041217.

[13] Hugo A. López, Carlos Olarte & Jorge A. Pérez (2010): Towards a Unified Framework for Declarative
Structured Communications. In: Programming Language Approaches to Concurrency and Communication-
cEntric Software (PLACES’2009), EPTCS 17, pp. 1–15, doi:10.4204/EPTCS.17.1.

[14] Robin Milner (1999): Communicating and Mobile systems. The Pi Calculus. Cambridge University Press.
[15] Carlo Montangero & Laura Semini (2006): A Logical View of Choreography. In: COORDINATION, pp.

179–193, doi:10.1007/11767954 12.
[16] G. D. Plotkin (1981): A Structural Approach to Operational Semantics. Technical Report, University of

Aarhus.
[17] Emil L. Post (1944): Recursively enumerable sets of positive integers and their decision problems. Bulletin

of the American Mathematical Society 50, pp. 284–316.
[18] JC Reynolds (2002): Separation logic: a logic for shared mutable data structures. Logic in Computer

Science, 2002. Proceedings. 17th Annual IEEE Symposium on , pp. 55–74Available at http://doi.

ieeecomputersociety.org/10.1109/LICS.2002.1029817.

http://dx.doi.org/10.1007/978-3-642-15375-4_12
http://dx.doi.org/10.1007/978-3-642-15375-4_12
http://dx.doi.org/10.1007/3-540-45500-0_1
http://dx.doi.org/10.1016/j.entcs.2006.12.041
http://dx.doi.org/10.1007/978-3-540-71316-6_2
http://dx.doi.org/10.1145/325694.325742
http://dx.doi.org/10.1007/3-540-44802-0_24
http://dx.doi.org/10.1007/3-540-10003-2_79
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.4204/EPTCS.17.1
http://dx.doi.org/10.1007/11767954_12
http://doi.ieeecomputersociety.org/10.1109/LICS.2002.1029817
http://doi.ieeecomputersociety.org/10.1109/LICS.2002.1029817

	1 Introduction
	2 The Global Calculus
	2.1 Syntax
	2.2 Semantics
	2.3 Session Types for the Global Calculus

	3 GL: A Logic for the Global Calculus
	3.1 Syntax
	3.2 Semantics

	4 Undecidability of Global Logic
	5 Proof System for Recursion-free Choreographies
	6 Conclusion and Related Work

